Abstract

An attempt has been made to investigate the performance of two methods of estimation of free and forced convection velocity components present in mixed convection. For this present analysis, a vertically configured shrouded plate finned channel is considered. From the literature, it is observed that in the solution of mixed convection problems related to the various engineering applications, proper estimation of induced velocity and fan/pump velocity plays a vital role. For this cause, segregation of the velocity components of free and forced convection present in the mixed convection becomes important. There exist two methods available in the literature, namely, first, the natural convection computational fluid dynamics method (NCM) used in the mixed convection computational fluid dynamics analysis under the same thermal and geometrical conditions, and second, forced convection decoupled method (FDM) applying the same pressure drop in forced and mixed convection across the channel. Results of this study reveal that if the free or induced velocity component present in the mixed convection is assessed based on the forced convection decoupled method, the pumping power results may be more precise than the natural convection computational fluid dynamic method as in the later method calculation of the forced convection velocity component is underpredicted. The natural convection velocity component evaluated through NCM varies 33% to 65.7% from the FDM based on the shroud clearance for the constant fin heights of 0.04 m. This variation is as high as 98% and 96% in the case of the larger nondimensional fin spacing of 0.3 and 0.5, respectively. A correlation of overall Nusselt number is suggested for a vertically configured shrouded dual-height plate finned channel evaluating appropriate Reynolds through the forced convection decoupled method.

References

1.
Chen
,
T.S.
,
Armaly
,
B.F.
,
1987
, “Mixed Convection in External Flow,”
Handbook of Single phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
, Section 14.
2.
Churchill
,
S. W.
,
1983
, “Combined Free and Forced Convection Around Immersed Bodies,”
HEDH: Heat Exchanger Design Handbook, Vol.2: Fluid Mechanics and Heat Transfer
,
E. U.
Schlunder
, ed.,
VDI-Verlag/Hemisphere
,
Dusseldorf/Washington, DC
, pp.
2.5.9.1
2.5.9.7
Section 2.5.9.
3.
Aung
,
W.
,
1987
, “Mixed Convection in Internal Flow,”
Handbook of Single Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
, pp.
15.1
15.55
Section 15.
4.
Acharya
,
S.
, and
Patankar
,
S. V.
,
1981
, “
Laminar Mixed Convection in Shrouded Fin Array
,”
ASME J. Heat Transfer-Trans. ASME
,
103
(
3
), pp.
559
565
.
5.
Zhang
,
Z.
, and
Patankar
,
S. V.
,
1984
, “
Influence of Buoyancy on the Vertical Flow and Heat Transfer in a Shrouded Fin Array
,”
Int. J. Heat Mass Transfer
,
27
(
1
), pp.
137
140
.
6.
Al-Sarkhi
,
A.
,
Abu-Nada
,
E.
,
Akash
,
B. A.
, and
Jaber
,
J. O.
,
2003
, “
Numerical Investigation of Shrouded Fin Array Under Combined Free and Forced Convection
,”
Int. Commun. Heat Mass Transfer
,
30
(
3
), pp.
435
444
.
7.
Yang
,
M.
,
Yeh
,
R.
, and
Hwang
,
J.
,
2010
, “
Mixed Convective Cooling of a Fin in a Channel
,”
Int. J. Heat Mass Transfer
,
53
(
4
), pp.
760
771
.
8.
Chen
,
H.
,
Tseng
,
H.
,
Jhu
,
S.
, and
Chang
,
J.
,
2017
, “
Numerical and Experimental Study of Mixed Convection Heat Transfer and Fluid Flow Characteristics of Plate-Fin Heat Sinks
,”
Int. J. Heat and Mass Transfer
,
111
, pp.
1050
1062
.
9.
Roy
,
K.
, and
Das
,
B.
,
2020
, “
Convective Heat Transfer From an Inclined Isothermal Fin Array: A Computational Study
,”
Therm. Sci. Eng. Prog.
,
17
, p.
100487
.
10.
Baranyuk
,
A. V.
,
Nikolaenko
,
Y. E.
,
Rohachov
,
V. A.
,
Terekh
,
A. M.
, and
Krukovskiy
,
P. G.
,
2019
, “
Investigation of the Flow Structure and Heat Transfer Intensity of Surfaces With Split Plate Finning
,”
Therm. Sci. Eng. Prog.
,
11
, pp.
28
39
.
11.
Siow
,
E. C.
,
Ormiston
,
S. J.
, and
Soliman
,
H. M.
,
2004
, “
A Two-Phase Model for Laminar Film Condensation From Steam-Air Mixtures in Vertical Parallel-Plate Channels
,”
Heat Mass Transfer
,
40
(
5
), pp.
365
375
.
12.
Belhadj Mohamed
,
A.
,
Orfi
,
J.
,
Debissi
,
C.
, and
Ben Nasrallah
,
S.
,
2007
, “
Heat and Mass Transfer During Condensation in a Vertical Channel Under Mixed Convection
,”
Heat Mass Transfer
,
43
(
9
), pp.
851
861
.
13.
Siow
,
E. C.
,
Ormiston
,
S. J.
, and
Soliman
,
H. M.
,
2007
, “
Two-Phase Modelling of Laminar Film Condensation From Vapour-Gas Mixtures in Declining Parallel-Plate Channels
,”
Int. J. Therm. Sci.
,
46
(
5
), pp.
458
466
.
14.
Dharma Rao
,
V.
,
Murali Krishna
,
V.
,
Sarma
,
P. K.
, and
Sharma
,
K. V.
,
2009
, “
Convective Condensation of Vapour in Laminar Flow in a Vertical Parallel Plate Channel in the Presence of a High Concentration Non-Condensable Gas
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
1
), pp.
0115021
0115027
.
15.
Benelmir
,
R.
,
Mokraoui
,
S.
, and
Souayed
,
A.
,
2009
, “
Numerical Analysis of Film Wise Condensation in a Plate Fin-and-Tube Heat Exchanger in Presence of Noncondensable Gas
,”
Heat Mass Transfer
,
45
(
12
), pp.
1561
1573
.
16.
Nasr
,
A.
,
2018
, “
Heat and Mass Transfer for Liquid Film Condensation Along a Vertical Channel Covered With a Thin Porous Layer
,”
Int. J. Therm. Sci.
,
124
, pp.
288
299
.
17.
Yerramalle
,
V.
,
Premachandran
,
B.
, and
Talukdar
,
P.
,
2021
, “
Mixed Convection From a Heat Source in a Channel with a Porous Insert: A Numerical Analysis Based on Local Thermal Non-Equilibrium Model
,”
Therm. Sci. Eng. Prog.
,
25
, p.
101010
.
18.
Mandal
,
S. K.
,
Deb
,
A.
, and
Sen
,
D.
,
2019
, “
Mixed Convective Heat Transfer With Surface Radiation in a Rectangular Channel With Heat Sources in Presence of Heat Spreader
,”
Therm. Sci. Eng. Prog.
,
14
, p.
100423
.
19.
Ajeel
,
R. K.
,
Saiful-Islam
,
W.
,
Sopian
,
K.
, and
Yusoff
,
M. Z.
,
2020
, “
Analysis of Thermal-Hydraulic Performance and Flow Structures of Nanofluids Across Various Corrugated Channels: An Experimental and Numerical Study
,”
Therm. Sci. Eng. Prog.
,
19
, p.
100604
.
20.
Afshari
,
F.
,
Ghasemi Zavaragh
,
H.
, and
Di Nicola
,
G.
,
2019
, “
Numerical Analysis of Ball-Type Turbulators in Tube Heat Exchangers With Computational Fluid Dynamic Simulations
,”
Int. J. Environ. Sci. Technol.
,
16
(
7
), pp.
3771
3780
.
21.
Afshari
,
F.
,
Sahin
,
B.
,
Marchetti
,
B.
,
Polonara
,
F.
,
Corvaro
,
F.
,
Leporini
,
M.
, and
Afshari
,
F.
,
2021
, “
Numerical Study on Drag Coefficient and Evaluation of the Flow Patterns in Perforated Particles
,”
Heat Transf. Res.
,
52
(
14
), pp.
47
61
.
22.
Pathak
,
K. K.
,
Giri
,
A.
, and
Lingfa
,
P.
,
2019
, “
Computational Study of Mixed Convective Heat Transfer From a Shrouded Vertical Dual-Height Plate Fin Array
,”
Int. J. Therm. Sci.
,
145
, p.
105958
.
23.
Bhuyan
,
D.
,
Giri
,
A.
, and
Lingfa
,
P.
,
2018
, “
Entropy Analysis of Mixed Convective Condensation by Evaluating Fan Velocity with a New Approach
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051003
.
24.
Bhuyan
,
D.
, and
Giri
,
A.
,
2021
, “
Heat Transfer and Second Law Analysis of Turbulent Flow Mixed Convection Condensation Inside a Vertical Channel
,”
Int. J. Heat Mass Transfer
,
165
(
Part A
), p.
120658
.
25.
Bhoite
,
M. T.
,
Narasimham
,
G. S. V. L.
, and
Murthy
,
M. V. K.
,
2005
, “
Mixed Convection in a Shallow Enclosure With a Series of Heat Generating Components
,”
Int. J. Therm.Sci.
,
44
(
2
), pp.
121
135
.
26.
Rao
,
G. M.
, and
Narasimham
,
G. S. V. L.
,
2007
, “
Laminar Conjugate Mixed Convection in a Vertical Channel With Heat Generating Components
,”
Int. J. Heat Mass Transfer
,
50
, pp.
3561
3574
.
27.
Giri
,
A.
, and
Das
,
B.
,
2012
, “
A Numerical Study of Entry Region Laminar Mixed Convection Over Shrouded Vertical Fin Arrays
,”
Int. J. Therm. Sci.
,
60
, pp.
212
224
.
28.
Das
,
B.
, and
Giri
,
A.
,
2014
, “
Non-Boussinesq Laminar Mixed Convection in a Non-Isothermal Fin Array
,”
Appl. Therm. Eng.
,
63
, pp.
447
458
.
29.
Giri
,
A.
,
Pathak
,
K. K.
, and
Das
,
B.
,
2015
, “
A Computational Study of Mixed Convective Heat and Mass Transfer From a Shrouded Vertical Non-Isothermal Fin Array During Dehumidification Process
,”
Int. J. Heat Mass Transfer
,
91
, pp.
264
281
.
30.
Giri
,
A.
,
Bhuyan
,
D.
, and
Das
,
B.
,
2015
, “
A Study of Mixed Convection Heat Transfer With Condensation From a Parallel Plate Channel
,”
Int. J. Therm. Sci.
,
98
, pp.
165
178
.
31.
Pathak
,
K. K.
, and
Giri
,
A.
,
2017
, “
Comparison Between Exact Thermal Boundary Condition and Harmonic Mean Conductivity Condition at the Solid-Fluid Interface for Finite Thickness Shrouded Non-Isothermal Fin Array
,”
Appl. Math. Model.
,
45
, pp.
323
335
.
32.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
33.
Maughan
,
J. R.
, and
Incropera
,
F. P.
,
1990
, “
Mixed Convection Heat Transfer With Longitudinal Fins in a Horizontal Parallel Plate Channel: Part II—Experimental Results
,”
ASME J. Heat Transfer-Trans. ASME
,
112
(
3
), pp.
619
624
.
34.
Pathak
,
K. K.
,
Giri
,
A.
, and
Lingfa
,
P.
,
2018
, “
A Numerical Study of Natural Convective Heat Transfer From a Shrouded Vertical Variable Height Non-Isothermal Fin Array
,”
Appl. Therm. Eng.
,
130
, pp.
1310
1318
.
35.
Starner
,
K. E.
, and
McManus
,
H. N.
,
1963
, “
An Experimental Investigation of Free-Convection Heat Transfer From Rectangular-Fin Arrays
,”
ASME J. Heat Transfer-Trans. ASME
,
85
(
3
), pp.
273
278
.
You do not currently have access to this content.