Abstract

Numerical studies on the flow and heat transfer characteristics of rectangular regenerative cooling passages with lateral curvature for a high-area-ratio nozzle are presented. Unlike regular geometries of coolant paths used in various engineering applications, high-area-ratio rocket nozzles have steeply curved surfaces over which the cooling passages are provided. Though the inherent inward curvature benefits heat transfer enhancement in the throat region, it is insufficient to circumvent peak heat dissipation demand. Hence, the heat transfer enhancement due to lateral curvature of the coolant fluid passages provided near the throat region is explored in this study. Extensive numerical simulations have been performed to analyze the effect of the geometry of the cooling channel on its flow and heat transfer characteristics. The compressible turbulent flow field inside the nozzle has been resolved to understand the realistic local wall heat transfer characteristics of the typical high-area-ratio rocket nozzle using Advection Upstream Splitting Method (AUSM) scheme-based finite volume solver. Menter’s Shear Stress Transport k–ω turbulence model is used to model the turbulent flow inside the nozzle. Simulations of the incompressible coolant flow and conjugate heat transfer in regenerative cooling passages have been performed with realistic spatially varying local heat flux profiles, resulting due to compressible gas expansion in the convergent–divergent nozzle. Secondary flow structures are formed due to the lateral curvature of the coolant fluid passages and are found to enhance the heat transfer considerably. Further, the effect of coolant flowrate and channel curvature have been examined to explore its suitability to negotiate the peak heat flux dissipation demand at the throat region of the nozzle.

References

1.
Sutton
,
G. P.
, and
Biblarz
,
O.
,
2016
,
Rocket Propulsion Elements
,
John Wiley & Sons
,
New York
.
2.
Huzel
,
D. K.
, and
Huang
,
D. H.
,
1992
,
Modern Engineering for Design of Liquid-Propellant Rocket Engines
,
AIAA
,
Washington DC
.
3.
Naraghi
,
M.
,
Dunn
,
S.
, and
Coats
,
D.
,
2006
, “
Dual Regenerative Cooling Circuits for Liquid Rocket Engines
,”
Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit
,
Sacramento, CA
,
July 9–12
, Paper No. AIAA-2006-4367.
4.
Shine
,
S. R.
, and
Nidhi
,
S. S.
,
2018
, “
Review on Film Cooling of Liquid Rocket Engines
,”
Propuls. Power Res.
,
7
(
1
), pp.
1
18
.
5.
Boldman
,
D. R.
,
Schmidt
,
J. F.
, and
Gallagher
,
A. K.
,
1968
, “
Laminarization of a Turbulent Boundary Layer as Observed from Heat-Transfer and Boundary-Layer Measurements in Conical Nozzles
,”
National Aeronautics and Space Administration
, Paper No. NASA TN D-4788.
6.
Back
,
L. H.
,
Massier
,
P. F.
, and
Gier
,
H. L.
,
1964
, “
Convective Heat Transfer in a Convergent-Divergent Nozzle
,”
Int. J. Heat Mass Transfer
,
7
(
5
), pp.
549
568
.
7.
Nordlund
,
R.
,
1985
, “
Space Shuttle Main Engine Nozzle Thermal Protection System
,”
Proceedings of the 20th Thermophysics Conference
,
Williamsburg, VA
,
June 21
, p.
1053
.
8.
Yang
,
W.
, and
Sun
,
B.
,
2013
, “
Numerical Simulation of Liquid Film and Regenerative Cooling in a Liquid Rocket
,”
Appl. Therm. Eng.
,
54
(
2
), pp.
460
469
.
9.
Song
,
J.
, and
Sun
,
B.
,
2016
, “
Coupled Numerical Simulation of Combustion and Regenerative Cooling in LOX/Methane Rocket Engines
,”
Appl. Therm. Eng.
,
106
(
8
), pp.
762
773
.
10.
Kim
,
S. K.
,
Joh
,
M.
,
Choi
,
H. S.
, and
Park
,
T. S.
,
2014
, “
Effective Modeling of Conjugate Heat Transfer and Hydraulics for the Regenerative Cooling Design of Kerosene Rocket Engines
,”
Numer. Heat Transfer, Part A
,
66
(
8
), pp.
863
883
.
11.
Pelevin
,
F. V.
,
Avraamov
,
N. I.
,
Ir’yanov
,
N. Y.
,
Orlin
,
S. A.
,
Lozovetskii
,
V. V.
, and
Ponomarev
,
A. V.
,
2018
, “
Intensification of Heat Exchange in the Regenerative Cooling System of a Liquid-Propellant Rocket Engine
,”
J. Eng. Phys. Thermophys.
,
91
(
3
), pp.
601
610
.
12.
Wadel
,
M. F.
,
1998
, “Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber With Development of an Optimized Design,” Master's dissertation,
Case Western Reserve University
,
Cleveland, OH
.
13.
Marchi
,
C. H.
,
Laroca
,
F.
,
Silva
,
A. F. C. D.
, and
Hinckel
,
J. N.
,
2004
, “
Numerical Solutions of Flows in Rocket Engines With Regenerative Cooling
,”
Numer. Heat Transfer, Part A
,
45
(
7
), pp.
699
717
.
14.
Wang
,
T. S.
, and
Luong
,
V.
,
1994
, “
Hot-Gas-Side and Coolant-Side Heat Transfer in Liquid Rocket Engine Combustors
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
524
530
.
15.
Ulas
,
A.
, and
Boysan
,
E. J. A. S.
,
2013
, “
Numerical Analysis of Regenerative Cooling in Liquid Propellant Rocket Engines
,”
Aerosp. Sci. Technol.
,
24
(
1
), pp.
187
197
.
16.
Kang
,
Y. D.
, and
Sun
,
B.
,
2011
, “
Numerical Simulation of Liquid Rocket Engine Thrust Chamber Regenerative Cooling
,”
J. Thermophys. Heat Transfer
,
25
(
1
), pp.
155
164
.
17.
Pizzarelli
,
M.
,
Nasuti
,
F.
, and
Onofri
,
M.
,
2014
, “
Effect of Cooling Channel Aspect Ratio on Rocket Thermal Behavior
,”
J. Thermophys. Heat Transfer
,
28
(
3
), pp.
410
416
.
18.
Boysan
,
M. E.
,
Ulas
,
A.
,
Toker
,
K. A.
, and
Seckin
,
B.
,
2007
, “
Comparison of Different Aspect Ratio Cooling Channel Designs for a Liquid Propellant Rocket Engine
,”
Proceedings of the 3rd International Conference on Recent Advances in Space Technologies
,
Istanbul, Turkey
,
June 14–16
, IEEE, pp.
225
230
.
19.
Park
,
T. S.
,
2013
, “
Effects of Aspect Ratio on the Turbulent Heat Transfer of Regenerative Cooling Passage in a Liquid Rocket Engine
,”
Numer. Heat Transfer, Part A
,
64
(
9
), pp.
710
728
.
20.
Rajagopal
,
M.
,
2015
, “
Numerical Modeling of Regenerative Cooling System for Large Expansion Ratio Rocket Engines
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011012
.
21.
Krishna
,
M.
,
Deepu
,
M.
, and
Shine
,
S. R.
,
2020
, “
Effect of Relative Waviness on Low Re Wavy Microchannel Flow
,”
J. Inst. Eng. (India): C
,
101
(
4
), pp.
661
670
.
22.
Guler
,
O. F.
,
Guven
,
O.
, and
Aktas
,
M. K.
,
2019
, “
Heat Transfer Enhancement by Sinusoidal Motion of a Water-Based Nanofluid
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
4
), p.
041001
.
23.
Wright
,
L. M.
,
Chen
,
A. F.
,
Wu
,
H. W.
,
Han
,
J. C.
,
Lee
,
C. P.
,
Azad
,
S.
, and
Um
,
J.
,
2021
, “
, Heat Transfer Enhancement in a Rectangular Cooling Channel With Airfoil Shaped Fins
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041026
.
24.
Saha
,
K.
,
Acharya
,
S.
, and
Nakamata
,
C.
,
2013
, “
Heat Transfer Enhancement and Thermal Performance of Lattice Structures for Internal Cooling of Airfoil Trailing Edges
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
1
), p.
011001
.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
26.
User Manual
,
2016
,
ANSYS FLUENT Release 17.0
,
Ansys Inc
,
Canonsburg, PA
.
27.
Bartz
,
D. R.
,
1965
, “
Turbulent Boundary-Layer Heat Transfer From Rapidly Accelerating Flow of Rocket Combustion Gases and of Heated Air
,”
Adv. Heat Transfer
,
2
(
1
), pp.
1
108
.
28.
Gordon
,
S.
,
1971
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations
,” Paper No. NASA SP-273.
29.
Engblom
,
W.
,
Fletcher
,
B.
, and
Georgiadis
,
N.
,
2007
, “
Validation of Conjugate Heat-Transfer Capability for Water-Cooled High-Speed Flows
,”
Proceedings of the 39th AIAA Thermophysics Conference
,
Miami, FL
,
June 25–28
, Paper No. AIAA-2007-4392.
30.
Shope
,
F. L.
,
1994
, “
Conjugate Conduction-Convection Heat Transfer with a High-Speed Boundary Layer
,”
J. Thermophys. Heat Transfer
,
8
(
2
), pp.
275
281
.
31.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
You do not currently have access to this content.