Abstract

This work aims to improve the knowledge on dynamic thermophysical characterization of building envelopes by comparing three numerical methods applied on an experimental wall made of masonry brick. The thermal conductivity λ and the thermal capacity ρCp are determined by performing a data fitting optimization between the experimental measurements of the heat flux and the heat flux resulting from these numerical models. The experimental device consists of a thermal box with a controlled ambiance through a radiator linked to a thermostatic bath and placed inside the thermal box, on the opposite side facing the wall. Three different methods were examined: the heat transfer matrix (HTM) analytical method using the HTM, the finite element method (FEM) using comsol multiphysics® software, and the building simulation model (BSM) method using trnsys® Type 56 coupled with Genopt® optimization tool. The reproducibility of the methods was also validated through two other datasets (one random and one harmonic). The obtained results were satisfactory for both λ and for ρCp and for the three studied methods with deviations less than 5% between the results of the different methods. The data logging duration for random boundary conditions was found to be around five days while in harmonic boundary conditions two days were sufficient for the solution to converge.

References

1.
Natephra
,
W.
,
Yabuki
,
N.
, and
Fukuda
,
T.
,
2018
, “
Optimizing the Evaluation of Building Envelope Design for Thermal Performance Using a BIM-Based Overall Thermal Transfer Value Calculation
,”
Build. Environ.
,
136
, pp.
128
145
. 10.1016/j.buildenv.2018.03.032
2.
EN ISO 6946
,
2007
, “
Building Components and Building Elements—Thermal Resistance and Thermal Transmittance—Calculation Method
.”
3.
Bruno
,
R.
,
Bevilacqua
,
P.
,
Cuconati
,
G.
, and
Arcuri
,
N.
,
2018
, “
An Innovative Compact Facility for the Measurement of the Thermal Properties of Building Materials: First Experimental Results
,”
Appl. Therm. Eng.
,
143
, pp.
947
954
. 10.1016/j.applthermaleng.2018.06.023
4.
Evangelisti
,
L.
,
Guattari
,
C.
, and
Asdrubali
,
F.
,
2019
, “
Comparison Between Heat-Flow Meter and Air-Surface Temperature Ratio Techniques for Assembled Panels Thermal Characterization
,”
Energy Build.
,
203
, p.
109441
. 10.1016/j.enbuild.2019.109441
5.
EN ISO 9869-1
,
2014
, “
Thermal Insulation—Building Elements—In-Situ Measurement of Thermal Resistance and Thermal Transmittance, Part 1: Heat Flow Meter Method
.”
6.
Rasooli
,
A.
, and
Itard
,
L.
,
2018
, “
In-Situ Characterization of Walls’ Thermal Resistance: An Extension to the ISO 9869 Standard Method
,”
Energy Build.
,
179
, pp.
374
383
. 10.1016/j.enbuild.2018.09.004
7.
Deconinck
,
A.
, and
Roels
,
S.
,
2016
, “
Comparison of Characterization Methods Determining the Thermal Resistance of Building Components From Onsite Measurements
,”
Energy Build.
,
130
, pp.
309
320
. 10.1016/j.enbuild.2016.08.061
8.
EN ISO 13786
,
2008
, “
Thermal Performance of Building Components—Dynamic Thermal Characteristics—Calculation Methods
.”
9.
Baldinelli
,
G.
,
Bianchi
,
F.
,
Lechowska
,
A.
, and
Schnotale
,
J.
,
2018
, “
Dynamic Thermal Properties of Building Components: Hot Box Experimental Assessment Under Different Solicitations
,”
Energy Build.
,
168
, pp.
1
8
. 10.1016/j.enbuild.2018.03.001
10.
Ricciu
,
R.
,
Galatioto
,
A.
,
Besalduch
,
L.
,
Gana
,
S.
, and
Frattolillo
,
A.
,
2019
, “
Thermal Properties of Building Walls: Indirect Estimation Using the Inverse Method With a Harmonic Approach
,”
Energy Build.
,
187
, pp.
257
268
. 10.1016/j.enbuild.2019.01.035
11.
Petojević
,
Z.
,
Gospavić
,
R.
, and
Todorović
,
G.
,
2018
, “
Estimation of Thermal Impulse Response of a Multi-Layer Building Wall Through In-Situ Experimental Measurements in a Dynamic Regime With Applications
,”
Appl. Energy
,
228
, pp.
468
486
. 10.1016/j.apenergy.2018.06.083
12.
Robinson
,
A. J.
,
Lesage
,
F. J.
,
Reilly
,
A.
,
Mc Granaghan
,
G.
,
Byrne
,
G.
,
O’Hegarty
,
R.
, and
Kinnane
,
O.
,
2017
, “
A New Transient Method for Determining Thermal Properties of Wall Sections
,”
Energy Build.
,
142
, pp.
139
146
. 10.1016/j.enbuild.2017.02.029
13.
Chaffar
,
K.
,
Chauchois
,
A.
,
Defer
,
D.
, and
Zalewski
,
L.
,
2014
, “
Thermal Characterization of Homogeneous Walls Using Inverse Method
,”
Energy Build.
,
78
, pp.
248
255
. 10.1016/j.enbuild.2014.04.038
14.
Soreta
,
G. M.
,
Lázarob
,
D.
,
Carrascala
,
J.
,
Alvearb
,
D.
,
Aitchisonc
,
M.
, and
Toreroa
,
J. L.
,
2017
, “
Thermal Characterization of Building Assemblies by Means of Transient Data Assimilation
,”
Energy Build.
,
155
, pp.
128
142
. 10.1016/j.enbuild.2017.08.073
15.
Sassine
,
E.
,
Younsi
,
Z.
,
Cherif
,
Y.
,
Chauchois
,
A.
, and
Antczak
,
E.
,
2017
, “
Experimental Determination of Thermal Properties of Brick Wall for Existing Construction in the North of France
,”
J. Build. Eng.
,
14
, pp.
15
23
. 10.1016/j.jobe.2017.09.007
16.
Sassine
,
E.
,
2016
, “
A Practical Method for In-Situ Thermal Characterization of Walls
,”
Case Stud. Therm. Eng.
,
8
, pp.
84
93
. 10.1016/j.csite.2016.03.006
17.
Sassine
,
E.
,
Younsi
,
Z.
,
Cherif
,
Y.
, and
Antczak
,
E.
,
2017
, “
Thermal Performance Evaluation of a Massive Brick Wall Under Real Weather Conditions Via the Conduction Transfer Function Method
,”
Case Stud. Constr. Mater.
,
7
, pp.
56
65
. 10.1016/j.cscm.2017.04.003
18.
Sassine
,
E.
,
Younsi
,
Z.
,
Cherif
,
Y.
, and
Antczak
,
E.
,
2017
, “
Frequency Domain Regression Method to Predict Thermal Behavior of Brick Wall of Existing Buildings
,”
Appl. Therm. Eng.
,
114
, pp.
24
35
. 10.1016/j.applthermaleng.2016.11.134
19.
Sassine
,
E.
,
Cherif
,
Y.
, and
Antczak
,
E.
,
2019
, “
Parametric Identification of Thermophysical Properties in Masonry Walls of Buildings
,”
J. Build. Eng.
,
25
, p.
100801
. 10.1016/j.jobe.2019.100801
20.
Stephenson
,
D. G.
, and
Mitalas
,
G. P.
,
1971
, “
Calculation of Heat Conduction Transfer Functions for Multilayer Slabs
,”
ASHRAE Trans.
,
77
, pp.
117
126
.
You do not currently have access to this content.