Abstract

This experimental test investigates the effect of filling ratio (FR) and inclination angle on the thermal performance of a nanoengineered copper-water heat pipe. A hydrophilic copper oxide coating (CuO) is synthesized and integrated on the inner wall of the evaporation section of the heat pipe. The heat pipe is fabricated from an inner grooved copper pipe with dimensions of 12.7 mm outer diameter, 11 mm inner diameter, and 440 mm length. Ultra-filtered de-ionized (DI) water is used as a working fluid. Four different FRs of DI water 3%, 5%, 10%, and 15% are investigated to determine the optimum configuration. All samples are tested at various inclination angles and working loads. Experimental results show that the optimum filling ratio is the 5% FR, which was indicated by the lowest thermal resistance of 0.019 K/W.

References

1.
Yau
,
Y. H.
, and
Ahmadzadehtalatapeh
,
M.
,
2010
, “
A Review on the Application of Horizontal Heat Pipe Heat Exchangers in Air Conditioning Systems in the Tropics
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
77
84
. 10.1016/j.applthermaleng.2009.07.011
2.
Guo
,
Z. J.
,
Shao
,
J.
,
Li
,
X. H.
,
Liu
,
R. J.
,
Wang
,
W.
, and
Tian
,
X. L.
,
2016
, “
Application of Pump-Assisted Separate Heat Pipe on Dehumidifying Enhancement in Air Conditioning System
,”
Appl. Therm. Eng.
,
98
, pp.
374
379
. 10.1016/j.applthermaleng.2015.12.055
3.
Yousefi
,
T.
,
Mousavi
,
S. A.
,
Farahbakhsh
,
B.
, and
Saghir
,
M. Z.
,
2013
, “
Experimental Investigation on the Performance of CPU Coolers: Effect of Heat Pipe Inclination Angle and the Use of Nanofluids
,”
Microelectr. Reliabil.
,
53
(
12
), pp.
1954
1961
. 10.1016/j.microrel.2013.06.012
4.
Salman
,
A. S.
,
Abdulrazzaq
,
N. M.
,
Oudah
,
S. K.
,
Tikadar
,
A.
,
Anumbe
,
N.
,
Paul
,
T. C.
, and
Khan
,
J. A.
,
2019
, “
Experimental Investigation of the Impact of Geometrical Surface Modification on Spray Cooling Heat Transfer Performance in the Non-Boiling Regime
,”
Int. J. Heat Mass Transfer
,
133
, pp.
330
340
. 10.1016/j.ijheatmasstransfer.2018.12.058
5.
Nazari
,
M.
,
Karami
,
M.
, and
Ashouri
,
M.
,
2014
, “
Comparing the Thermal Performance of Water, Ethylene Glycol, Alumina and CNT Nanofluids in CPU Cooling: Experimental Study
,”
Exp. Therm. Fluid Sci.
,
57
, pp.
371
377
. 10.1016/j.expthermflusci.2014.06.003
6.
Du
,
B.
,
Hu
,
E.
, and
Kolhe
,
M.
,
2013
, “
An Experimental Platform for Heat Pipe Solar Collector Testing
,”
Renew. Sustain. Energy Rev.
,
17
, pp.
119
125
. 10.1016/j.rser.2012.09.009
7.
Jouhara
,
H.
,
Szulgowska-Zgrzywa
,
M.
,
Sayegh
,
M. A.
,
Milko
,
J.
,
Danielewicz
,
J.
,
Nannou
,
T. K.
, and
Lester
,
S. P.
,
2017
, “
The Performance of a Heat Pipe Based Solar PV/T Roof Collector and Its Potential Contribution in District Heating Applications
,”
Energy
,
136
, pp.
117
125
. 10.1016/j.energy.2016.04.070
8.
Noie
,
S. H.
,
Sarmasti Emami
,
M. R.
, and
Khoshnoodi
,
M.
,
2007
, “
Effect of Inclination Angle and Filling Ratio on Thermal Performance of a Two-Phase Closed Thermosyphon Under Normal Operating Conditions
,”
Heat Transfer Eng.
,
28
(
4
), pp.
365
371
. 10.1080/01457630601122997
9.
Lips
,
S.
,
Lefèvre
,
F.
, and
Bonjour
,
J.
,
2010
, “
Combined Effects of the Filling Ratio and the Vapour Space Thickness on the Performance of a Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
,
53
(
4
), pp.
694
702
. 10.1016/j.ijheatmasstransfer.2009.10.022
10.
Senthil
,
R.
,
Ratchagaraja
,
D.
,
Silambarasan
,
R.
, and
Manikandan
,
R.
,
2016
, “
Contemplation of Thermal Characteristics by Filling Ratio of Al2O3 Nanofluid in Wire Mesh Heat Pipe
,”
Alexandria Eng. J.
,
55
(
2
), pp.
1063
1068
. 10.1016/j.aej.2016.03.011
11.
Chen
,
J.-S.
, and
Chou
,
J.-H.
,
2014
, “
Cooling Performance of Flat Plate Heat Pipes With Different Liquid Filling Ratios
,”
Int. J. Heat Mass Transfer
,
77
, pp.
874
882
. 10.1016/j.ijheatmasstransfer.2014.06.029
12.
Tharayil
,
T.
,
Asirvatham
,
L. G.
,
Ravindran
,
V.
, and
Wongwises
,
S.
,
2016
, “
Effect of Filling Ratio on the Performance of a Novel Miniature Loop Heat Pipe Having Different Diameter Transport Lines
,”
Appl. Therm. Eng.
,
106
, pp.
588
600
. 10.1016/j.applthermaleng.2016.05.125
13.
Sukchana
,
T.
, and
Jaiboonma
,
C.
,
2013
, “
Effect of Filling Ratios and Adiabatic Length on Thermal Efficiency of Long Heat Pipe Filled With R-134a
,”
Energy Procedia
,
34
, pp.
298
306
. 10.1016/j.egypro.2013.06.758
14.
Naresh
,
Y.
, and
Balaji
,
C.
,
2017
, “
Experimental Investigations of Heat Transfer From an Internally Finned Two Phase Closed Thermosyphon
,”
Appl. Therm. Eng.
,
112
, pp.
1658
1666
. 10.1016/j.applthermaleng.2016.10.084
15.
Xu
,
Z.
,
Zhang
,
Y.
,
Li
,
B.
,
Wang
,
C.-C.
, and
Ma
,
Q.
,
2018
, “
Heat Performances of a Thermosyphon as Affected by Evaporator Wettability and Filling Ratio
,”
Appl. Therm. Eng.
,
129
, pp.
665
673
. 10.1016/j.applthermaleng.2017.10.073
16.
Lv
,
F. Y.
,
Zhang
,
P.
,
Orejon
,
D.
,
Askounis
,
A.
, and
Shen
,
B.
,
2017
, “
Heat Transfer Performance of a Lubricant-Infused Thermosyphon at Various Filling Ratios
,”
Int. J. Heat Mass Transfer
,
115
, pp.
725
736
. 10.1016/j.ijheatmasstransfer.2017.07.062
17.
Alammar
,
A. A.
,
Al-Dadah
,
R. K.
, and
Mahmoud
,
S. M.
,
2016
, “
Numerical Investigation of Effect of Fill Ratio and Inclination Angle on a Thermosiphon Heat Pipe Thermal Performance
,”
Appl. Therm. Eng.
,
108
, pp.
1055
1065
. 10.1016/j.applthermaleng.2016.07.163
18.
Shabgard
,
H.
,
Xiao
,
B.
,
Faghri
,
A.
,
Gupta
,
R.
, and
Weissman
,
W.
,
2014
, “
Thermal Characteristics of a Closed Thermosyphon Under Various Filling Conditions
,”
Int. J. Heat Mass Transfer
,
70
, pp.
91
102
. 10.1016/j.ijheatmasstransfer.2013.10.053
19.
Aly
,
W. I. A.
,
Elbalshouny
,
M. A.
,
Abd El-Hameed
,
H. M.
, and
Fatouh
,
M.
,
2017
, “
Thermal Performance Evaluation of a Helically-Micro-Grooved Heat Pipe Working With Water and Aqueous Al2O3 Nanofluid at Different Inclination Angle and Filling Ratio
,”
Appl. Therm. Eng.
,
110
, pp.
1294
1304
. 10.1016/j.applthermaleng.2016.08.130
20.
Jafari
,
D.
,
Di Marco
,
P.
,
Filippeschi
,
S.
, and
Franco
,
A.
,
2017
, “
An Experimental Investigation on the Evaporation and Condensation Heat Transfer of Two-Phase Closed Thermosyphons
,”
Exp. Therm. Fluid Sci.
,
88
, pp.
111
123
. 10.1016/j.expthermflusci.2017.05.019
21.
Sarafraz
,
M. M.
,
Hormozi
,
F.
, and
Peyghambarzadeh
,
S. M.
,
2014
, “
Thermal Performance and Efficiency of a Thermosyphon Heat Pipe Working With a Biologically Ecofriendly Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
297
303
. 10.1016/j.icheatmasstransfer.2014.08.020
22.
Abdulshaheed
,
A. A.
,
Wang
,
P.
,
Huang
,
G.
, and
Li
,
C.
,
2019
, “
High Performance Copper-Water Heat Pipes With Nanoengineered Evaporator Sections
,”
Int. J. Heat Mass Transfer
,
133
, pp.
474
486
. 10.1016/j.ijheatmasstransfer.2018.12.114
23.
Enright
,
R.
,
Miljkovic
,
N.
,
Alvarado
,
J. L.
,
Kim
,
K.
, and
Rose
,
J. W.
,
2014
, “
Dropwise Condensation on Micro- and Nanostructured Surfaces
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
223
250
. 10.1080/15567265.2013.862889
24.
Cheng
,
J.
,
Wang
,
G.
,
Zhang
,
Y.
,
Pi
,
P.
, and
Xu
,
S.
,
2017
, “
Enhancement of Capillary and Thermal Performance of Grooved Copper Heat Pipe by Gradient Wettability Surface
,”
Int. J. Heat Mass Transfer
,
107
, pp.
586
591
. 10.1016/j.ijheatmasstransfer.2016.10.078
25.
Tang
,
Y.
,
Hu
,
Z.
,
Qing
,
J.
,
Xie
,
Z.
,
Fu
,
T.
, and
Chen
,
W.
,
2013
, “
Experimental Investigation on Isothermal Performance of the Micro-Grooved Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
47
, pp.
143
149
. 10.1016/j.expthermflusci.2013.01.009
26.
Li
,
Y.
,
Chen
,
S.
,
He
,
B.
,
Yan
,
Y.
, and
Li
,
B.
,
2016
, “
Effects of Vacuuming Process Parameters on the Thermal Performance of Composite Heat Pipes
,”
Appl. Therm. Eng.
,
99
, pp.
32
41
. 10.1016/j.applthermaleng.2016.01.035
27.
Imura
,
H.
,
Kusuda
,
H.
,
Ogata
,
J.-I.
,
Miyazaki
,
T.
, and
Sakamoto
,
N. J. J. T.
,
1979
, “
Heat Transfer in Two-Phase Closed-Type Thermosyphons
,”
JSME Trans.
,
45
(
393
), pp.
712
722
.
28.
Jafari
,
D.
,
Filippeschi
,
S.
,
Franco
,
A.
, and
Di Marco
,
P.
,
2017
, “
Unsteady Experimental and Numerical Analysis of a Two-Phase Closed Thermosyphon at Different Filling Ratios
,”
Exp. Therm. Fluid Sci.
,
81
, pp.
164
174
. 10.1016/j.expthermflusci.2016.10.022
29.
Hassan
,
H.
, and
Harmand
,
S.
,
2017
, “
An Experimental Work on the Effect of the Radius of Rotation on the Performance of Revolving Heat Pipe (RVHP)
,”
Appl. Therm. Eng.
,
123
, pp.
537
545
. 10.1016/j.applthermaleng.2017.05.133
30.
Chi
,
S. W.
,
1976
,
Heat Pipe Theory and Practice
,
Hemisphere Pub. Corp
,
Washington
.
31.
Reay
,
D.
,
McGlen
,
R.
, and
Kew
,
P.
,
2013
,
Heat Pipes: Theory, Design and Applications
,
Butterworth-Heinemann
.
32.
Ling
,
L.
,
Zhang
,
Q.
,
Yu
,
Y.
,
Liao
,
S.
, and
Sha
,
Z.
,
2016
, “
Experimental Study on the Thermal Characteristics of Micro Channel Separate Heat Pipe Respect to Different Filling Ratio
,”
Appl. Therm. Eng.
,
102
, pp.
375
382
. 10.1016/j.applthermaleng.2016.03.016
33.
Lataoui
,
Z.
, and
Jemni
,
A.
,
2017
, “
Experimental Investigation of a Stainless Steel Two-Phase Closed Thermosyphon
,”
Appl. Therm. Eng.
,
121
, pp.
721
727
. 10.1016/j.applthermaleng.2017.04.135
34.
Byon
,
C.
, and
Kim
,
S. J.
,
2012
, “
Capillary Performance of Bi-Porous Sintered Metal Wicks
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4096
4103
. 10.1016/j.ijheatmasstransfer.2012.03.051
35.
Jafari
,
D.
,
Filippeschi
,
S.
,
Franco
,
A.
, and
Di Marco
,
P.
,
2015
, “
Numerical Analysis of the Effect of Filling Ratio on the Transient Behaviour of a Two-Phase Closed Thermosyphon
,”
Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering, MCM 2015
,
Barcelona, Spain
,
July 20–21
,
Avestia Publishing
.
You do not currently have access to this content.