Abstract

The design of highly sensitive thermoelectric microfluidic sensors for the characterization of biochemical processes is an important area of engineering research. This study reports the design and fabrication of a continuous-flow biosensor with an integrated thermopile and three-dimensional numerical analysis of the critical design parameters that significantly increase the detection sensitivity of the platform. The paper discusses the impact of volumetric flowrate, channel height, material thermal properties, and heat sink on the magnitude of the thermoelectric signal. In the platform understudy, the heat generated by the enzymatic reaction between glucose oxidase-conjugated antibody and glucose is converted to an electric output by an antimony-bismuth thin-film thermopile with a theoretical Seebeck coefficient of 7.14 µV mK−1. Since this experimental configuration has been implemented in a various biochemical analysis, particular emphasis in this work is maximizing the detection sensitivity of the device. Computational thermal modeling was performed to investigate the impact of channel height (50 µm, 100 µm, 150 µm, and 200 µm), the volumetric flow rate of the substrate (25 µL min−1 and 50 µL min−1), and the microdevice material (glass, PMMA, and PDMS) on the output of the thermoelectric sensor. Experimental data validated the model and provided an excellent correlation between the predicted and measured voltage output. Results show that fabricating the calorimeter out of materials with lower thermal diffusivity, reducing the channel height, and eliminating the heat sink at the reference junction of the thermopile increases the sensitivity of the platform by 783%.

References

1.
Liao
,
Z.
,
Zhang
,
Y.
,
Li
,
Y.
,
Miao
,
Y.
,
Gao
,
S.
,
Lin
,
F.
,
Deng
,
Y.
, and
Geng
,
L.
,
2019
, “
Microfluidic Chip Coupled with Optical Biosensors for Simultaneous Detection of Multiple Analytes: A Review
,”
Biosens. Bioelectron.
,
126
, pp.
697
706
. 10.1016/j.bios.2018.11.032
2.
Bange
,
A.
,
Wong
,
D. K. Y.
,
Seliskar
,
C. J.
,
Halsall
,
H. B.
, and
Heineman
,
W. R.
,
2005
, “
Microscale Immunosensors for Biological Agents
,”
Microfluidics, BioMEMS, and Medical Microsystems III
,
International Society for Optics and Photonics
, pp.
142
150
.
3.
Nestorova
,
G. G.
,
Kopparthy
,
V. L.
,
Crews
,
N. D.
, and
Guilbeau
,
E. J.
,
2015
, “
Thermoelectric Lab-on-a-Chip ELISA
,”
Anal. Methods
,
7
(
5
), pp.
2055
2063
. 10.1039/C4AY02764G
4.
Vermeir
,
S.
,
Verboven
,
P.
,
Atalay
,
Y. T.
,
Nicolai
,
B. M.
,
Lammertyn
,
J.
, and
Irudayaraj
,
J.
,
2005
, “
Computational Fluid Dynamics Model for Optimal Flow Injection Analysis Biosensor Design
,”
IEEE Sensors
,
IEEE
, pp.
365
368
.
5.
Ho
,
C.-M.
, and
Tai
,
Y.-C.
,
1998
, “
Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
579
612
. 10.1146/annurev.fluid.30.1.579
6.
Darhuber
,
A. A.
, and
Troian
,
S. M.
,
2005
, “
Principles of Microfluidic Actuation by Modulation of Surface Stresses
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
425
455
. 10.1146/annurev.fluid.36.050802.122052
7.
Chen
,
S.
, and
Tian
,
Z.
,
2010
, “
Simulation of Thermal Micro-Flow Using Lattice Boltzmann Method with Langmuir Slip Model
,”
Int. J. Heat Fluid Flow
,
31
(
2
), pp.
227
235
. 10.1016/j.ijheatfluidflow.2009.12.006
8.
Zhao
,
Z.
,
Fisher
,
A.
, and
Cheng
,
D.
,
2018
,
Microfluidics: Fundamental, Devices and Applications
,
Y.
Song
,
D.
Cheng
, and
L.
Zhao
, eds.,
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
, pp.
147
174
.
9.
Nestorova
,
G. G.
,
Crews
,
N. D.
, and
Guilbeau
,
E. J.
,
2015
, “
Theoretical and Experimental Analysis of Thermoelectric Lab-on-a-Chip ELISA
,”
Microfluid. Nanofluid.
,
19
(
4
), pp.
963
972
. 10.1007/s10404-015-1625-x
10.
Jia
,
Y.
,
Wang
,
B.
,
Zhang
,
Z.
, and
Lin
,
Q.
,
2015
, “
A Polymer-Based MEMS Differential Scanning Calorimeter
,”
Sens. Actuators, A
,
231
, pp.
1
7
. 10.1016/j.sna.2014.07.011
11.
Wang
,
L.
,
Sipe
,
D. M.
,
Xu
,
Y.
, and
Lin
,
Q.
,
2008
, “
A MEMS Thermal Biosensor for Metabolic Monitoring Applications
,”
J. Microelectromec. Syst.
,
17
(
2
), pp.
318
327
. 10.1109/JMEMS.2008.916357
12.
Bari
,
S. M. I.
,
Reis
,
L. G.
, and
Nestorova
,
G. G.
,
2019
, “
Calorimetric Sandwich-Type Immunosensor for Quantification of TNF-α
,”
Biosens. Bioelectron.
,
126
, pp.
82
87
. 10.1016/j.bios.2018.10.028
13.
Higuera-Guisset
,
J.
,
Rodríguez-Viejo
,
J.
,
Chacón
,
M.
,
Muñoz
,
F. J.
,
Vigués
,
N.
, and
Mas
,
J.
,
2005
, “
Calorimetry of Microbial Growth Using a Thermopile Based Microreactor
,”
Thermochim. Acta
,
427
(
1–2
), pp.
187
191
. 10.1016/j.tca.2004.09.010
14.
Tangutooru
,
S. M.
,
Kopparthy
,
V. L.
,
Nestorova
,
G. G.
, and
Guilbeau
,
E. J.
,
2012
, “
Dynamic Thermoelectric Glucose Sensing with Layer-by-Layer Glucose Oxidase Immobilization
,”
Sens. Actuators, B
,
166–167
, pp.
637
641
. 10.1016/j.snb.2012.03.027
15.
Ahmad
,
L. M.
,
Towe
,
B.
,
Wolf
,
A.
,
Mertens
,
F.
, and
Lerchner
,
J.
,
2010
, “
Binding Event Measurement Using a Chip Calorimeter Coupled to Magnetic Beads
,”
Sens. Actuators, B
,
145
(
1
), pp.
239
245
. 10.1016/j.snb.2009.12.012
16.
Nestorova
,
G. G.
, and
Guilbeau
,
E. J.
,
2011
, “
Thermoelectric Method for Sequencing DNA
,”
Lab Chip
,
11
(
10
), pp.
1761
1769
. 10.1039/c0lc00733a
17.
Nestorova
,
G. G.
,
Adapa
,
B. S.
,
Kopparthy
,
V. L.
, and
Guilbeau
,
E. J.
,
2016
, “
Lab-on-a-Chip Thermoelectric DNA Biosensor for Label-Free Detection of Nucleic Acid Sequences
,”
Sens. Actuators, B
,
225
, pp.
174
180
. 10.1016/j.snb.2015.11.032
18.
Wang
,
S.
,
Yu
,
S.
,
Siedler
,
M. S.
,
Ihnat
,
P. M.
,
Filoti
,
D. I.
,
Lu
,
M.
, and
Zuo
,
L.
,
2016
, “
Micro-Differential Scanning Calorimeter for Liquid Biological Samples
,”
Rev. Sci. Instrum.
,
87
(
10
), p.
105005
. 10.1063/1.4965443
19.
Lerchner
,
J.
,
Wolf
,
A.
,
Wolf
,
G.
,
Baier
,
V.
,
Kessler
,
E.
,
Nietzsch
,
M.
, and
Krügel
,
M.
,
2006
, “
A New Micro-Fluid Chip Calorimeter for Biochemical Applications
,”
Thermochim. Acta
,
445
(
2
), pp.
144
150
. 10.1016/j.tca.2005.07.011
20.
Kopparthy
,
V. L.
,
Tangutooru
,
S. M.
,
Nestorova
,
G. G.
, and
Guilbeau
,
E. J.
,
2012
, “
Thermoelectric Microfluidic Sensor for Bio-Chemical Applications
,”
Sens. Actuators, B
,
166–167
, pp.
608
615
. 10.1016/j.snb.2012.03.021
21.
Davani
,
S.
,
Kopparthy
,
V. L.
, and
Crews
,
N.
,
2019
, “
Detecting Thermal Asymmetry in Microfluidics for Sensor Applications: Critical Design Considerations and Optimization
,”
Int. J. Heat Mass Transfer
,
133
, pp.
572
580
. 10.1016/j.ijheatmasstransfer.2018.12.021
22.
Lerchner
,
J.
,
Wolf
,
A.
,
Wolf
,
G.
, and
Fernandez
,
I.
,
2006
, “
Chip Calorimeters for the Investigation of Liquid Phase Reactions: Design Rules
,”
Thermochim. Acta
,
446
(
1–2
), pp.
168
175
. 10.1016/j.tca.2006.04.020
23.
Wang
,
L.
, and
Lin
,
Q.
,
2005
, “
Theory and Experiments of MEMS Thermal Biosensors
,”
2005 IEEE Engineering in Medicine and Biology 27th Annual Conference
,
IEEE
, pp.
1301
1304
.
24.
Weibel
,
B. Y. M. K.
, and
Bright
,
H. J.
,
1971
, “
Kinetic Behaviour of Glucose Oxidase Bound to Porous Glass Particles
,”
Biochem. J.
,
124
(
4
), pp.
801
807
. 10.1042/bj1240801
25.
Baesso
,
M. L.
,
Shen
,
J.
, and
Snook
,
R. D.
,
1992
, “
Time-Resolved Thermal Lens Measurement of Thermal Diffusivity of Soda—Lime Glass
,”
Chem. Phys. Lett.
,
197
(
3
), pp.
255
258
. 10.1016/0009-2614(92)85764-2
26.
Mark
,
J.
,
1999
,
Polymer Data Handbook
,
Oxford University Press
,
New York
.
27.
Paguirigan
,
A. L.
, and
Beebe
,
D. J.
,
2009
, “
From the Cellular Perspective: Exploring Differences in the Cellular Baseline in Macroscale and Microfluidic Cultures
,”
Integr. Biol.
,
1
(
2
), pp.
182
195
. 10.1039/b814565b
28.
Lee
,
J. N.
,
Park
,
C.
, and
Whitesides
,
G. M.
,
2003
, “
Solvent Compatibility of Poly(Dimethylsiloxane)-Based Microfluidic Devices
,”
Anal. Chem.
,
75
(
23
), pp.
6544
6554
. 10.1021/ac0346712
29.
Gervais
,
T.
,
El-Ali
,
J.
,
Günther
,
A.
, and
Jensen
,
K. F.
,
2006
, “
Flow-Induced Deformation of Shallow Microfluidic Channels
,”
Lab Chip
,
6
(
4
), pp.
500
507
. 10.1039/b513524a
You do not currently have access to this content.