Abstract

In the present study, we numerically investigate the thermal lagging behavior on the hard disk drives in heat-assisted magnetic recording systems via the optical absorption model. The influences of overcoats, laser radius, relative scanning speed, interfacial thermal resistance, and the heat sink layer on the thermal lagging behavior are studied in detail. It is found that the thermal lagging distance, i.e., the horizontal distance between the location of the maximum temperature and the laser center, increases with an increment of speed and/or radius of the laser spot. The overcoats, the interfacial thermal resistance, and the heat sink layer have negligible effects on the lagging distance. Thus, the multilayered disk can be simplified as a single-layer disk for investigating thermal lagging distance. Meanwhile, the horizontal temperature gradient varies with these factors. Different overcoats result in different horizontal temperature gradient owing to the difference of in-plane thermal diffusivity. A laser with a smaller radius or a slower speed leads to a higher horizontal temperature gradient. The thermal resistance influences the horizontal temperature gradient insignificantly. This study may provide useful information for the design of hard disk drives for heat-assisted magnetic recording technologies.

References

1.
Weller
,
D.
, and
Moser
,
A.
,
1999
, “
Thermal Effect Limits in Ultrahigh-Density Magnetic Recording
,”
IEEE Trans. Magn.
,
35
(
6
), pp.
4423
4439
. 10.1109/20.809134
2.
Mosendz
,
O.
,
Pisana
,
S.
,
Reiner
,
J. W.
,
Stipe
,
B.
, and
Weller
,
D.
,
2012
, “
Ultra-High Coercivity Small-Grain FePt Media for Thermally Assisted Recording (Invited)
,”
J. Appl. Phys.
,
111
(
7
), p.
07B729
. 10.1063/1.3680543
3.
Kryder
,
M. H.
,
Gage
,
E. C.
,
McDaniel
,
T. W.
,
Challener
,
W. A.
,
Rottmayer
,
R. E.
,
Ju
,
G.
,
Hsia
,
Y.-T.
, and
Erden
,
M. F.
,
2008
, “
Heat Assisted Magnetic Recording
,”
Proc. IEEE
,
96
(
11
), pp.
1810
1835
. 10.1109/JPROC.2008.2004315
4.
Tagawa
,
N.
,
Andoh
,
H.
, and
Tani
,
H.
,
2010
, “
Study on Lubricant Depletion Induced by Laser Heating in Thermally Assisted Magnetic Recording Systems: Effect of Lubricant Thickness and Bonding Ratio
,”
Tribol. Lett.
,
37
(
2
), pp.
411
418
. 10.1007/s11249-009-9533-4
5.
Wu
,
L.
,
2007
, “
Modelling and Simulation of the Lubricant Depletion Process Induced by Laser Heating in Heat-Assisted Magnetic Recording System
,”
Nanotechnology
,
18
(
21
), p.
215702
. 10.1088/0957-4484/18/21/215702
6.
Yu
,
P.
,
Zhou
,
W.
,
Yu
,
S.
, and
Myo
,
K. S.
,
2013
, “
Modeling Laser Heated Thin Film Media for Heat Assisted Magnetic Recording
,”
Microsyst. Technol.
,
19
(
9
), pp.
1457
1463
. 10.1007/s00542-013-1840-x
7.
Yu
,
P.
,
Zhou
,
W.
,
Yu
,
S.
, and
Zeng
,
Y.
,
2013
, “
Laser-Induced Local Heating and Lubricant Depletion in Heat Assisted Magnetic Recording Systems
,”
Int. J. Heat Mass Transfer
,
59
, pp.
36
45
. 10.1016/j.ijheatmasstransfer.2012.12.007
8.
Li
,
Y.
,
Wong
,
C. H.
,
Li
,
B.
,
Yu
,
S.
,
Hua
,
W.
, and
Zhou
,
W.
,
2012
, “
Lubricant Evolution and Depletion Under Laser Heating: A Molecular Dynamics Study
,”
Soft Matter
,
8
(
20
), pp.
5649
5657
. 10.1039/c2sm07326a
9.
Ambekar
,
R. P.
,
Bogy
,
D. B.
, and
Bhatia
,
C. S.
,
2009
, “
Lubricant Depletion and Disk-to-Head Lubricant Transfer at the Head-Disk Interface in Hard Disk Drives
,”
ASME J. Tribol.
,
131
(
3
), p.
031901
.
10.
Dai
,
X.
,
Zhang
,
J.
,
Shen
,
S.
,
Li
,
H.
,
Zhai
,
T.
,
Wu
,
S.
,
Liu
,
S.
, and
Du
,
H.
,
2017
, “
Study of Formation and Development of Lubricant Bridge in Head–Disk Interface Using Molecular Dynamic Method
,”
IEEE Trans. Magn.
,
53
(
3
), pp.
1
4
.
11.
Li
,
L.
,
Suen
,
B.
, and
Talke
,
F. E.
,
2015
, “
Investigation of Temperature Dependence of Raman Shift of Diamond-Like Carbon Coatings Used in Heat-Assisted Magnetic Recording
,”
IEEE Trans. Magn.
,
51
(
11
), pp.
1
4
.
12.
Li
,
H.
,
Shen
,
S.
,
Cui
,
F.
,
Huang
,
J.
, and
Wu
,
S.
,
2014
, “
Simulation of Cross-Talk Between Thermal Track Positioning Control and Thermal Flying Height Control
,”
J. Appl. Phys.
,
115
(
17
), p.
17B714
. 10.1063/1.4862942
13.
Xu
,
B. X.
,
Yuan
,
H. X.
,
Zhang
,
J.
,
Yang
,
J. P.
,
Ji
,
R.
, and
Chong
,
T. C.
,
2008
, “
Thermal Effect on Slider Flight Height in Heat Assisted Magnetic Recording
,”
J. Appl. Phys.
,
103
(
7
), p.
07F525
. 10.1063/1.2835474
14.
Myo
,
K. S.
,
Zhou
,
W.
,
Huang
,
X.
, and
Yu
,
S.
,
2015
, “
Numerical Investigation of Thermal Effects on a HAMR Head-Disk Interface
,”
Microsyst. Technol.
,
21
(
12
), pp.
2641
2647
. 10.1007/s00542-015-2517-4
15.
Challener
,
W.
,
Peng
,
C.
,
Itagi
,
A.
,
Karns
,
D.
,
Peng
,
W.
,
Peng
,
Y.
,
Yang
,
X.
,
Zhu
,
X.
,
Gokemeijer
,
N. J.
,
Hsia
,
Y.-T.
,
Ju
,
G.
,
Rottmayer
,
R. E.
,
Seigler
,
M. A.
, and
Gage
,
E. C.
,
2009
, “
Heat-Assisted Magnetic Recording by a Near-Field Transducer With Efficient Optical Energy Transfer
,”
Nat. Photonics
,
3
(
4
), pp.
220
224
. 10.1038/nphoton.2009.26
16.
Huang
,
L.
,
Stipe
,
B.
,
Staffaroni
,
M.
,
Juang
,
J.-Y.
,
Hirano
,
T.
,
Schreck
,
E.
, and
Huang
,
F.-Y.
,
2013
, “
HAMR Thermal Modeling Including Media Hot Spot
,”
IEEE Trans. Magn.
,
49
(
6
), pp.
2565
2568
. 10.1109/TMAG.2013.2252886
17.
Yu
,
P.
, and
Zeng
,
Y.
,
2017
, “
Characterization of Laser-Induced Local Heating in a Substrate
,”
Int. J. Heat Mass Transfer
,
106
, pp.
989
996
. 10.1016/j.ijheatmasstransfer.2016.10.068
18.
Shamsa
,
M.
,
Liu
,
W.
,
Balandin
,
A.
,
Casiraghi
,
C.
,
Milne
,
W.
, and
Ferrari
,
A.
,
2006
, “
Thermal Conductivity of Diamond-Like Carbon Films
,”
Appl. Phys. Lett.
,
89
(
16
), p.
161921
. 10.1063/1.2362601
19.
Hakovirta
,
M.
,
Vuorinen
,
J.
,
He
,
X.
,
Nastasi
,
M.
, and
Schwarz
,
R.
,
2000
, “
Heat Capacity of Hydrogenated Diamond-Like Carbon Films
,”
Appl. Phys. Lett.
,
77
(
15
), pp.
2340
2342
. 10.1063/1.1290387
20.
Inaba
,
Y.
,
Zana
,
I.
,
Swartz
,
C.
,
Kubota
,
Y.
,
Klemmer
,
T.
,
Harrell
,
J.
, and
Thompson
,
G. B.
,
2010
, “
Time Temperature-Transformation Measurements of FePt Thin Films in the Millisecond Regime Using Pulse Laser Processing
,”
J. Appl. Phys.
,
108
(
10
), p.
103907
. 10.1063/1.3506689
21.
Yu
,
P.
,
Yu
,
S.
, and
Zhou
,
W.
,
2015
, “
Evaluation of Thermal Performance of Graphene Overcoat on Multi-Layered Structure Subject to Laser Heating
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
27
31
. 10.1016/j.icheatmasstransfer.2015.08.005
22.
Yu
,
P.
,
Zhou
,
W.
,
Yu
,
S.
, and
Liu
,
B.
,
2013
, “
Thermal Effect of a Thin Overcoating Layer Subject to Laser Heating
,”
IEEE Trans. Magn.
,
49
(
6
), pp.
2782
2785
. 10.1109/TMAG.2013.2256416
23.
Yu
,
P.
,
Zhou
,
W.
, and
Yu
,
S.
,
2015
, “
Effect of the Thickness of a Diamond-Like Carbon Layer on the Local Temperature Increase in a Multilayered Structure Induced by Laser Heating
,”
Numer. Heat Transfer Part A
,
67
(
7
), pp.
791
807
. 10.1080/10407782.2014.949185
24.
Cen
,
Z. H.
,
Xu
,
B. X.
,
Hu
,
J. F.
,
Li
,
J. M.
,
Cher
,
K. M.
,
Toh
,
Y. T.
,
Ye
,
K. D.
, and
Zhang
,
J.
,
2013
, “
Optical Property Study of Fept-c Nanocomposite Thin Film for Heat-Assisted Magnetic Recording
,”
Opt. Express
,
21
(
8
), pp.
9906
9914
. 10.1364/OE.21.009906
25.
Mansuripur
,
M.
,
Connell
,
G. N.
, and
Goodman
,
J. W.
,
1982
, “
Laser-Induced Local Heating of Multilayers
,”
Appl. Optics
,
21
(
6
), pp.
1106
1114
. 10.1364/AO.21.001106
26.
Mansuripur
,
M.
, and
Connell
,
G. A. N.
,
1983
, “
Laser-Induced Local Heating of Moving Multilayer Media
,”
Appl. Optics
,
22
(
5
), pp.
666
670
. 10.1364/AO.22.000666
27.
Itagi
,
A. V.
,
2007
, “
Finite Volume Method for the Fourier Heat Conduction in Layered Media With a Moving Volume Heat Source
,”
Jpn. J. Appl. Phys.
,
46
(
4A
), pp.
1482
1489
. 10.1143/JJAP.46.1482
28.
Zeng
,
Y.
,
Huang
,
X.
,
Zhou
,
W.
, and
Yu
,
S.
,
2013
, “
Numerical Study of Thermal-Induced Lubricant Depletion Induced on an Anisotropic Multilayer Disk in a Heat Assisted Magnetic Recording System
,”
Int. J. Heat Mass Transfer
,
60
, pp.
322
333
. 10.1016/j.ijheatmasstransfer.2013.01.012
29.
Wu
,
L.
, and
Talke
,
F. E.
,
2011
, “
Modeling Laser Induced Lubricant Depletion in Heat-Assisted-Magnetic Recording Systems Using a Multiple-Layered Disk Structure
,”
Microsyst. Technol.
,
17
(
5–7
), pp.
1109
1114
. 10.1007/s00542-011-1300-4
30.
Zhou
,
W.
,
Zeng
,
Y.
,
Liu
,
B.
,
Yu
,
S.
, and
Huang
,
X.
,
2012
, “
A Model for Laser Induced Lubricant Depletion in Heat-Assisted Magnetic Recording
,”
Tribol. Lett.
,
45
(
3
), pp.
411
416
. 10.1007/s11249-011-9898-z
31.
Zeng
,
Y.
,
Zhou
,
W.
,
Huang
,
X.
, and
Yu
,
S.
,
2012
, “
Numerical Study on Thermal-Induced Lubricant Depletion in Laser Heat-Assisted Magnetic Recording Systems
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
886
896
. 10.1016/j.ijheatmasstransfer.2011.10.020
32.
Lo
,
C.-Y.
,
2011
, “
A Study of Two-Step Heat Conduction in Laser Heating Using the Hybrid Differential Transform Method
,”
Numer. Heat Transfer Part B
,
59
(
2
), pp.
130
146
. 10.1080/10407790.2011.550524
33.
Lyberatos
,
A.
, and
Parker
,
G. J.
,
2019
, “
Model of Ballistic-Diffusive Thermal Transport in HAMR Media
,”
Jpn. J. Appl. Phys.
,
58
(
4
), p.
045002
. 10.7567/1347-4065/ab0743
34.
Maldovan
,
M.
,
2011
, “
Micro to Nano Scale Thermal Energy Conduction in Semiconductor Thin Films
,”
J. Appl. Phys.
,
110
(
3
), p.
034308
. 10.1063/1.3607295
35.
Tsai
,
T.-W.
,
Lee
,
Y.-M.
, and
Shiah
,
Y.-C.
,
2013
, “
Heat Conduction Analysis in an Anisotropic Thin Film Irradiated by an Ultrafast Pulse Laser Heating
,”
Numer. Heat Transfer, Part A
,
64
(
2
), pp.
132
152
. 10.1080/10407782.2013.772852
36.
Rausch
,
T.
,
Mihalcea
,
C.
,
Pelhos
,
K.
,
Karns
,
D.
,
Mountfield
,
K.
,
Kubota
,
Y. A.
,
Wu
,
X.
,
Ju
,
G.
,
Challener
,
W. A.
,
Peng
,
C.
,
Li
,
L.
,
Hsia
,
Y.-T.
, and
Gage
,
E. C.
,
2006
, “
Near Field Heat Assisted Magnetic Recording With a Planar Solid Immersion Lens
,”
Jpn. J. Appl. Phys.
,
45
(
2B
), pp.
1314
1320
. 10.1143/JJAP.45.1314
37.
Koh
,
Y. K.
,
Lyons
,
A. S.
,
Bae
,
M.-H.
,
Huang
,
B.
,
Dorgan
,
V. E.
,
Cahill
,
D. G.
, and
Pop
,
E.
,
2016
, “
Role of Remote Interfacial Phonon (Rip) Scattering in Heat Transport Across Graphene/SiO2 Interfaces
,”
Nano Lett.
,
16
(
10
), pp.
6014
6020
. 10.1021/acs.nanolett.6b01709
38.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
. 10.1103/RevModPhys.61.605
39.
Juang
,
J.-Y.
, and
Zheng
,
J.
,
2016
, “
Thermal Analysis of Continuous and Patterned Multilayer Films in the Presence of a Nanoscale Hot Spot
,”
AIP Adv.
,
6
(
10
), p.
105102
. 10.1063/1.4964497
40.
Ong
,
Z.-Y.
,
2017
, “
Thickness-Dependent Kapitza Resistance in Multilayered Graphene and Other Two Dimensional Crystals
,”
Phys. Rev. B
,
95
(
15
), p.
155309
. 10.1103/PhysRevB.95.155309
You do not currently have access to this content.