Abstract

In this paper, two-dimensional unsteady simulations of yield-stress fluids in the Poiseuille–Rayleigh–Bénard flow between two horizontal plates were performed. The laminar flow of these fluids is characterized by the existence of high- and low-viscous zones. The thermal and hydrodynamic behaviors were studied in the case where the convective instability was developed, and the high-viscous zones were minimized. The commercial computational fluid dynamics (CFD) package fluent was adopted to perform the different simulations. The average Nusselt number over time of the two plates was chosen to characterize the thermal transport, while the average of the maximum vertical velocity component over time in the horizontal mid-plane described the hydrodynamics of the flow. It was found that the fluid behaved according to a range of viscosities with the same order of magnitude as the plastic viscosity. The effect of the dimensionless numbers on the flow showed that the yield-stress fluid could mimic a Newtonian behavior in the pre-described conditions. Although, the fluid still held the non-Newtonian character distinguished by the dependency on the Bingham number Bn. This returned to the increase of the apparent viscosity with Bn which contributed to the weakening of the convective streams, and consequently, reduced convective thermal transport.

References

1.
Citerne
,
G. P.
,
Carreau
,
P. J.
, and
Moan
,
M.
,
2001
, “
Rheological Properties of Peanut Butter
,”
Rheol. Acta
,
40
(
1
), pp.
86
96
. 10.1007/s003970000120
2.
Shaw
,
H. R.
,
Wright
,
T. L.
,
Peck
,
D. L.
, and
Okamura
,
R.
,
1968
, “
The Viscosity of Basaltic Magma: An Analysis of Field Measurements in Makaopuhi Lava Lake, Hawaii
,”
Am. J. Sci.
,
266
(
4
), pp.
225
264
. 10.2475/ajs.266.4.225
3.
Bird
,
R. B.
,
Dai
,
G. C.
, and
Yarusso
,
B. J.
,
1983
, “
The Rheology and Flow of Viscoplastic Materials
,”
Rev. Chem. Eng.
,
1
(
1
), pp.
1
70
. 10.1515/revce-1983-0102
4.
Bénard
,
H.
, and
Avsec
,
D.
,
1938
, “
Travaux Récents sur les Tourbillons Cellulaires et les Tourbillons en Bandes. Applications à L’astrophysique et à la Météorologie
,”
J. Phys. Radium
,
9
(
11
), pp.
486
500
. 10.1051/jphysrad:01938009011048600
5.
Luijkx
,
J. M.
,
Platten
,
J. K.
, and
Legros
,
J. C.
,
1981
, “
On the Existence of Thermoconvective Rolls, Transverse to a Superimposed Mean Poiseuille Flow
,”
Int. J. Heat Mass Transfer
,
24
(
7
), pp.
1287
1291
. 10.1016/0017-9310(81)90178-2
6.
Rayleigh
,
L.
,
1916
, “
“LIX: On Convection Currents in a Horizontal Layer of Fluid, When the Higher Temperature is on the Under Side
,”
London, Edinburgh, and Dublin Philos. Mag. J. Sci.
,
32
(
192
), pp.
529
546
. 10.1080/14786441608635602
7.
Nicolas
,
X.
,
2002
, “
Bibliographical Review on the Poiseuille-Rayleigh-Bénard Flows: The Mixed Convection Flows in Horizontal Rectangular Ducts Heated From Below
,”
Int. J. Therm. Sci.
,
41
(
10
), pp.
961
1016
. 10.1016/S1290-0729(02)01374-1
8.
Yasuo
,
M.
, and
Uchida
,
Y.
,
1966
, “
Forced Convective Heat Transfer Between Horizontal Flat Plates
,”
Int. J. Heat Mass Transfer
,
9
(
8
), pp.
803
817
. 10.1016/0017-9310(66)90007-X
9.
Kennedy
,
K. J.
, and
Zebib
,
A.
,
1983
, “
Combined Free and Forced Convection Between Horizontal Parallel Planes, Some Case Studies
,”
Int. J. Heat Mass Transfer
,
26
(
3
), pp.
471
474
. 10.1016/0017-9310(83)90052-2
10.
Kuan-Cheng
,
C.
, and
Rosenberger
,
F.
,
1987
, “
Mixed Convection Between Horizontal Plates—I. Entrance Effects
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1645
1654
. 10.1016/0017-9310(87)90310-3
11.
Kuan-Cheng
,
C.
,
Jalil
,
O.
, and
Rosenberger
,
F.
,
1987
, “
Mixed Convection Between Horizontal Plates—II. Fully Developed Flow
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1655
1662
. 10.1016/0017-9310(87)90311-5
12.
Müller
,
H. W.
,
Lücke
,
M.
, and
Kamps
,
M.
,
1989
, “
Convective Patterns in Horizontal Flow
,”
EPL (Europhys. Lett.)
,
10
(
5
), pp.
451
456
. 10.1209/0295-5075/10/5/011
13.
Ouazzani
,
M. T.
,
Caltagirone
,
J. P.
,
Meyer
,
G.
, and
Mojtabi
,
A.
,
1989
, “
Etude Numérique et Expérimentale de la Convection Mixte Entre Deux Plans Horizontaux à Températures Différentes
,”
Int. J. Heat Mass Transfer
,
32
(
2
), pp.
261
269
. 10.1016/0017-9310(89)90173-7
14.
Ouazzani
,
M. T.
,
Platten
,
J. K.
, and
Mojtabi
,
A.
,
1990
, “
Etude Expérimentale de la Convection Mixte Entre Deux Plans Horizontaux à Températures Différentes—II
,”
Int. J. Heat Mass Transfer
,
33
(
7
), pp.
1417
1427
. 10.1016/0017-9310(90)90039-W
15.
Ouazzani
,
M. T.
,
Platten
,
J. K.
,
Müller
,
H. W.
, and
Lücke
,
M.
,
1995
, “
Etude de la Convection Mixte Entre Deux Plans Horizontaux à Températures Différentes—III
,”
Int. J. Heat Mass Transfer
,
38
(
5
), pp.
875
886
. 10.1016/0017-9310(94)00206-B
16.
Nicolas
,
X.
,
Mojtabi
,
A.
, and
Platten
,
J. K.
,
1997
, “
Two-dimensional Numerical Analysis of the Poiseuille–Bénard Flow in a Rectangular Channel Heated From Below
,”
Phys. Fluids
,
9
(
2
), pp.
337
348
. 10.1063/1.869235
17.
Nicolas
,
X.
,
Traoré
,
P.
,
Mojtabi
,
A.
, and
Caltagirone
,
J. P.
,
1997
, “
Augmented Lagrangian Method and Open Boundary Conditions in 2D Simulation of Poiseuille–Bénard Channel Flow
,”
Int. J. Numer. Methods Fluids
,
25
(
3
), pp.
265
283
.<265::AID-FLD548>3.0.CO;2-B
18.
Nicolas
,
X.
,
Luijkx
,
J. M.
, and
Platten
,
J. K.
,
2000
, “
Linear Stability of Mixed Convection Flows in Horizontal Rectangular Channels of Finite Transversal Extension Heated From Below
,”
Int. J. Heat Mass Transfer
,
43
(
4
), pp.
589
610
. 10.1016/S0017-9310(99)00099-X
19.
Chamkha
,
A. J.
,
2002
, “
On Laminar Hydromagnetic Mixed Convection Flow in a Vertical Channel with Symmetric and Asymmetric Wall Heating Conditions
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2509
2525
. 10.1016/S0017-9310(01)00342-8
20.
Umavathi
,
J. C.
,
Chamkha
,
A. J.
,
Mateen
,
A.
, and
Al-Mudhaf
,
A.
,
2005
, “
Unsteady Two-Fluid Flow and Heat Transfer in a Horizontal Channel
,”
Heat Mass Transfer
,
42
(
2
), pp.
81
90
. 10.1007/s00231-004-0565-x
21.
Umavathi
,
J. C.
,
Kumar
,
J. P.
,
Chamkha
,
A. J.
, and
Pop
,
I.
,
2005
, “
Mixed Convection in a Vertical Porous Channel
,”
Transp. Porous Media
,
61
(
3
), pp.
315
335
. 10.1007/s11242-005-0260-5
22.
Metivier
,
C.
,
Nouar
,
C.
, and
Brancher
,
J. P.
,
2005
, “
Linear Stability Involving the Bingham Model When the Yield Stress Approaches Zero
,”
Phys. Fluids
,
17
(
10
), p.
104106
. 10.1063/1.2101007
23.
Metivier
,
C.
, and
Nouar
,
C.
,
2008
, “
On Linear Stability of Rayleigh–Bénard Poiseuille Flow of Viscoplastic Fluids
,”
Phys. Fluids
,
20
(
10
), p.
104101
. 10.1063/1.2987435
24.
Métivier
,
C.
,
Frigaard
,
I. A.
, and
Nouar
,
C.
,
2009
, “
Nonlinear Stability of the Bingham Rayleigh–Bénard Poiseuille Flow
,”
J. Non-Newtonian Fluid Mech.
,
158
(
1–3
), pp.
127
131
. 10.1016/j.jnnfm.2008.08.009
25.
Metivier
,
C.
,
Nouar
,
C.
, and
Brancher
,
J. P.
,
2010
, “
Weakly Nonlinear Dynamics of Thermoconvective Instability Involving Viscoplastic Fluids
,”
J. Fluid Mech.
,
660
, pp.
316
353
. 10.1017/S0022112010002788
26.
Metivier
,
C.
, and
Nouar
,
C.
,
2011
, “
Stability of a Rayleigh–Bénard Poiseuille Flow for Yield Stress Fluids—Comparison Between Bingham and Regularized Models
,”
Int. J. Non-Linear Mech.
,
46
(
9
), pp.
1205
1212
. 10.1016/j.ijnonlinmec.2011.05.017
27.
Métivier
,
C.
, and
Magnin
,
A.
,
2011
, “
The Effect of Wall Slip on the Stability of the Rayleigh–Bénard Poiseuille Flow of Viscoplastic Fluids
,”
J. Non-Newtonian Fluid Mech.
,
166
(
14–15
), pp.
839
846
. 10.1016/j.jnnfm.2011.04.017
28.
Davaille
,
A.
,
Gueslin
,
B.
,
Massmeyer
,
A.
, and
Di Giuseppe
,
E.
,
2013
, “
Thermal Instabilities in a Yield Stress Fluid, Existence and Morphology
,”
J. Non-Newtonian Fluid Mech.
,
193
, pp.
144
153
. 10.1016/j.jnnfm.2012.10.008
29.
Kebiche
,
Z.
,
Castelain
,
C.
, and
Burghelea
,
T.
,
2014
, “
Experimental Investigation of the Rayleigh–Bénard Convection in a Yield Stress Fluid
,”
J. Non-Newtonian Fluid Mech.
,
203
, pp.
9
23
. 10.1016/j.jnnfm.2013.10.005
30.
Bingham
,
E. C.
,
1922
,
Fluidity and Plasticity, Vol. 2
,
McGraw-Hill
,
New York
.
31.
Turan
,
O.
,
Chakraborty
,
N.
, and
Poole
,
R. J.
,
2010
, “
Laminar Natural Convection of Bingham Fluids in a Square Enclosure with Differentially Heated Side Walls
,”
J. Non-Newtonian Fluid Mech.
,
165
(
15–16
), pp.
901
913
. 10.1016/j.jnnfm.2010.04.013
32.
Turan
,
O.
,
Sachdeva
,
A.
,
Poole
,
R. J.
, and
Chakraborty
,
N.
,
2011
, “
Laminar Natural Convection of Bingham Fluids in a Square Enclosure with Vertical Walls Subjected to Constant Heat Flux
,”
Numer. Heat Transfer, Part A: Appl.
,
60
(
5
), pp.
381
409
. 10.1080/10407782.2011.594417
33.
Turan
,
O.
,
Chakraborty
,
N.
, and
Poole
,
R. J.
,
2012
, “
Laminar Rayleigh-Bénard Convection of Yield Stress Fluids in a Square Enclosure
,”
J. Non-Newtonian Fluid Mech.
,
171
, pp.
83
96
. 10.1016/j.jnnfm.2012.01.006
34.
Ayadi
,
A.
,
2011
, “
Exact Analytic Solutions of the Lubrication Equations for Squeeze-Flow of a Biviscous Fluid Between Two Parallel Disks
,”
J. Non-Newtonian Fluid Mech.
,
166
(
21–22
), pp.
1253
1261
. 10.1016/j.jnnfm.2011.08.003
35.
O’Donovan
,
E. J.
, and
Tanner
,
R. I.
,
1984
, “
Numerical Study of the Bingham Squeeze Film Problem
,”
J. Non-Newtonian Fluid Mech.
,
15
(
1
), pp.
75
83
. 10.1016/0377-0257(84)80029-4
36.
Boussinesq
,
J.
,
1872
, “
Théorie des Ondes et des Remous qui se Propagent le Long D’un Canal Rectangulaire Horizontal, en Communiquant au Liquide Contenu Dans ce Canal des Vitesses Sensiblement Pareilles de la Surface au Fond
,”
J. de mathématiques pures et appliquées
, pp.
55
108
.
37.
Herschel
,
W. H.
, and
Bulkley
,
R.
,
1926
, “
Konsistenzmessungen von Gummi-Benzollösungen
,”
Colloid Polym. Sci.
,
39
(
4
), pp.
291
300
. 10.1007/bf01432034
38.
2006
,
FLUENT 6.3 User’s Guide
,
Fluent Inc
,
Lebanon, New Hampshire
, pp.
542
543
.
39.
Barton
,
I. E.
,
1998
, “
Comparison of SIMPLE-and PISO-Type Algorithms for Transient Flows
,”
Int. J. Numer. Methods Fluids
,
26
(
4
), pp.
459
483
. 10.1002/(SICI)1097-0363(19980228)26:4<459::AID-FLD645>3.0.CO;2-U
40.
Visser
,
E. P.
,
Kleijn
,
C. R.
,
Govers
,
C. A. M.
,
Hoogendoorn
,
C. J.
, and
Giling
,
L. J.
,
1989
, “
Return Flows in Horizontal MOCVD Reactors Studied with the use of TiO2 Particle Injection and Numerical Calculations
,”
J. Cryst. Growth
,
94
(
4
), pp.
929
946
. 10.1016/0022-0248(89)90127-9
You do not currently have access to this content.