The effects of acoustic excitation at resonance on the flame appearances, flame lengths, flame temperatures, and combustion product concentrations of combusting swirling dual-disk double-concentric jets were studied. The Reynolds number of the annular swirling air jet was varied, while it was fixed at 2500 for the central propane jet. The central fuel jet was acoustically forced by a loudspeaker, which was installed using downstream longitudinal irradiation. The central jet pulsation intensities were measured by a calibrated, one-component hot-wire anemometer. The instantaneous full-length and close-up flame images were captured to identify the characteristic flame modes. Long-exposure flame images were taken to measure the flame lengths. The axial and radial temperature distributions of flames were measured using a homemade, fine-wire R-type thermocouple. The concentrations of combustion products were measured by a gas analyzer. Four characteristic flame modes, blue-base wrinkled flame, yellow-base anchored flame, blue-base anchored flame, and lifted flame, were observed in the domain of central jet pulsation intensity and annular swirling jet Reynolds number. The lifted flame, which was formed at large central jet pulsation intensities, presented characteristics of a premixed flame due to significant mixing induced by violent, turbulent flow motions. It was short and stable, with high combustion efficiency and low toxic emissions, when compared with the unexcited flame and other excited characteristic flame modes, which presented characteristics of diffusion flame.

References

1.
Chterev
,
I.
,
Foley
,
C. W.
,
Foti
,
D.
,
Kostka
,
S.
,
Caswell
,
A. W.
,
Jiang
,
N.
,
Lynch
,
A.
,
Noble
,
D. R.
,
Menon
,
S.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Flame and Flow Topologies in an Annular Swirling Flow
,”
Combust. Sci. Technol.
,
186
(
8
), pp.
1041
1074
.
2.
Lilley
,
D. G.
,
2006
, “
Swirl and Lateral Injection for Improved Mixing and Combustion
,”
ASME
Paper No. POWER2006-88148.
3.
Luo
,
R.
,
Zhang
,
Y.
,
Li
,
N.
,
Zhou
,
Q.
, and
Sun
,
P.
,
2014
, “
Experimental Study on Flow and Combustion Characteristic of a Novel Swirling Burner Based on Dual Register Structure for Pulverized Coal Combustion
,”
Exp. Therm. Fluid Sci.
,
54
, pp.
136
150
.
4.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.
5.
Liu
,
T.
,
Bai
,
F.
,
Zhao
,
Z.
,
Lin
,
Y.
,
Du
,
Q.
, and
Peng
,
Z.
,
2017
, “
Large Eddy Simulation Analysis on Confined Swirling Flows in a Gas Turbine Swirl Burner
,”
Energies
,
10
(
12
), pp.
1
18
.
6.
Steinberg
,
A. M.
,
Boxx
,
I.
,
Stohr
,
M.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2010
, “
Flow-Flame Interactions Causing Acoustically Coupled Heat Release Fluctuations in a Thermo-Acoustically Unstable Gas Turbine Model Combustor
,”
Combust. Flame
,
157
(
12
), pp.
2250
2266
.
7.
Mediana
,
A. V.
,
Syred
,
N.
, and
Bowen
,
P.
,
2013
, “
Central Recirculation Zone Visualization in Confined Swirl Combustors for Terrestrial Energy
,”
J. Propul. Power
,
29
(
1
), pp.
195
204
.
8.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
,
2017
, “
Acoustic and Heat Release Signatures for Swirl Assisted Distributed Combustion
,”
J. Appl. Energy
,
193
(
1
), pp.
125
138
.
9.
Medina
,
A. V.
,
Syred
,
N.
, and
Griffiths
,
A.
,
2009
, “
Visualisation of Isothermal Large Coherent Structures in a Swirl Burner
,”
Combust. Flame
,
156
(
9
), pp.
1723
1734
.
10.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy. Combust. Sci.
,
32
(
2
), pp.
93
161
.
11.
Meier
,
W.
,
Dem
,
C.
, and
Arndt
,
C. M.
,
2016
, “
Mixing and Reaction Progress in a Confined Swirl Flame Undergoing Thermo-Acoustic Oscillations Studied With Laser Raman Scattering
,”
Exp. Therm. Fluid Sci.
,
73
, pp.
71
78
.
12.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Cambridge, MA
.
13.
Benjamin
,
T. B.
,
1962
, “
Theory of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
,
14
(
4
), pp.
593
629
.
14.
Braza
,
M.
,
Perrin
,
R.
, and
Hoarau
,
Y.
,
2006
, “
Turbulence Properties in the Cylinder Wake at High Reynolds Numbers
,”
J. Fluids Struct.
,
22
(
6–7
), pp.
757
771
.
15.
Zhang
,
P.
,
Han
,
C.
, and
Chen
,
Y.
,
2013
, “
Large Eddy Simulation of Flows After a Bluff Body: Coherent Structures and Mixing Properties
,”
J. Fluids Struct.
,
42
, pp.
1
12
.
16.
Villanueva
,
J. J. C.
, and
Silva
,
L. F. F.
,
2016
, “
Study of the Turbulent Velocity Field in the Near Wake of a Bluff Body
,”
Flow Turbul. Combust.
,
97
(
3
), pp.
715
728
.
17.
Caetano
,
N. R.
, and
Silva
,
L. F. F.
,
2015
, “
A Comparative Experimental Study of Turbulent Non Premixed Flames Stabilized by a Bluff-Body Burner
,”
Exp. Therm. Fluid Sci.
,
63
, pp.
20
33
.
18.
Gue
,
P.
,
Zang
,
S.
, and
Ge
,
B.
,
2010
, “
Technical Brief: Predictions of Flow Field for Circular-Disk Bluff-Body Stabilized Flame Investigated by Large Eddy Simulation and Experiments
,”
ASME J. Eng. Gas Turbines Power
,
132
(
5
), p.
054503
.
19.
Yoon
,
J.
, and
Yoon
,
Y.
,
2017
, “
Comparative Study of Mixing Characteristics of Particle-Laden Shear and Swirl Coaxial Jets
,”
J. Propul. Power
,
33
(
5
), pp.
1102
1110
.
20.
Chigier
,
N. A.
, and
Beer
,
J. M.
,
1964
, “
The Flow Region Near the Nozzle in Double Concentric Jets
,”
ASME J. Basic Eng.
,
86
(
4
), pp.
797
804
.
21.
Santos
,
T. P.
,
Gutkowski
,
A. N.
,
Mendoza
,
V.
,
Szasz
,
R. Z.
,
Rodriguez
,
M. A.
,
Castro
,
F.
, and
Perez
,
J. R.
,
2016
, “
Swirl Influence on Mixing and Reactive Flows
,”
ASME
Paper No. FEDSM2016-7502.
22.
Huang
,
R. F.
, and
Lin
,
C. L.
,
1997
, “
Flow Characteristics and Shear-Layer Vortex Shedding of Double Concentric Jets
,”
AIAA J.
,
35
(
5
), pp.
887
892
.
23.
Santhosh
,
R.
,
Miglani
,
A.
, and
Basu
,
S.
,
2014
, “
Transition in Vortex Breakdown Modes in a Coaxial Isothermal Unconfined Swirling Jet
,”
Phys. Fluids
,
26
(
4
), p.
043601
.
24.
Yen
,
S. C.
,
Shin
,
C. L.
, and
San
,
K. C.
,
2017
, “
Non-Premixed Flame Characteristics and Exhaust Gas Concentrations behind Rifled Bluff-Body Cones
,”
J. Energy Inst.
,
91
(
4
), pp.
489
501
.
25.
Huang
,
R. F.
, and
Tsai
,
F. C.
,
2001
, “
Observation of Swirling Flows behind Circular Disks
,”
AIAA J.
,
39
(
6
), pp.
1106
1112
.
26.
Loretero
,
M. E.
, and
Huang
,
R. F.
,
2010
, “
Effects of Acoustic Excitation on a Swirling Diffusion Flame
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
121501
.
27.
Loretero
,
M. E.
, and
Huang
,
R. F.
,
2013
, “
Effects of Acoustic Excitation and Annular Swirl Strength on a Non-Premixed and Swirl-Stabilized Flame
,”
ASCE J. Energy Eng.
,
139
(
4
), pp.
329
337
.
28.
Huang
,
R. F.
, and
Yen
,
S. C.
,
2003
, “
Axisymmetric Swirling Vortical Wakes Modulated by a Control Disk
,”
AIAA J.
,
41
(
5
), pp.
888
896
.
29.
Le
,
M. D.
,
Hsu
,
C. M.
, and
Huang
,
R. F.
,
2018
, “
Velocity Fields and Mixing Properties of Swirling Double-Concentric Jets Using Two Separated Circular Disks as Center Bodies
,”
Exp. Therm. Fluid Sci.
,
93
(
1
), pp.
73
85
.
30.
Vermeulen
,
P. J.
,
Danilowich
,
M. S.
,
“Heydlauff
,
E. P.
, and
Price
,
T. W.
,
1974
, “
The Acoustically Excited Flame
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
147
157
.
31.
Hauser
,
M.
,
Lorenz
,
M.
, and
Sattelmayer
,
T.
,
2011
, “
Influence of Transversal Acoustic Excitation of the Burner Approach Flow on the Flame Structure
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
041501
.
32.
Hoferichter
,
V.
, and
Sattelmayer
,
T.
,
2017
, “
Boundary Layer Flashback in Premixed Hydrogen-Air Flames With Acoustic Excitation
,”
ASME
Paper No. GT2017-63080.
33.
Smith
,
T.
,
Emerson
,
B.
,
Proscia
,
W.
, and
Lieuwen
,
T.
,
2017
, “
Flame Response to Traverse Acoustic Forcing With Minimal Axial Coupling
,”
ASME
Paper No. GT2017-63812.
34.
Acharya
,
V.
,
Emerson
,
B.
,
Mondragon
,
U.
,
Brown
,
C.
,
Shin
,
D. H.
,
Donell
,
V. M.
, and
Lieuwen
,
T.
,
2011
, “
Measurements and Analysis of Bluff-Body Flame Response to Transverse Excitation
,”
ASME
Paper No. GT2011-45268.
35.
Yoshida
,
H.
,
Koda
,
M.
,
Ooishi
,
Y.
,
Kobayashi
,
K. P.
, and
Saito
,
M.
,
2001
, “
Super-Mixing Combustion Enhanced by Resonance Between Micro-Shear Layer and Acoustic Excitation
,”
Int. J. Heat Fluid Flow
,
22
(
3
), pp.
372
379
.
36.
Suzuki
,
M.
,
Atarashi
,
T.
, and
Masuda
,
W.
,
2007
, “
Behavior and Structure of Internal Fuel-Jet in Diffusion Flame Under Transverse Acoustic Excitation
,”
Combust. Sci. Technol
,
179
(
12
), pp.
2581
2597
.
37.
Kim
,
M.
,
Choi
,
Y.
,
Oh
,
J.
, and
Yoon
,
Y.
,
2009
, “
Flame Vortex Interaction and Mixing Behaviors of Turbulent Non-Premixed Jet Flames Under Acoustic Forcing
,”
Combust. Flame
,
156
(
12
), pp.
2252
2263
.
38.
Wang
,
Q.
,
Zhang
,
Y.
,
Tang
,
H. J.
, and
Zhu
,
M.
,
2012
, “
Visualization of Diffusion Flame/Vortex Structure and Dynamics Under Acoustic Excitation
,”
Combust. Sci. Technol.
,
184
(
10–11
), pp.
1445
1455
.
39.
Saurabh
,
A.
,
Steinert
,
R.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2014
, “
Swirl Flame Response to Traveling Acoustic Waves
,”
ASME
Paper No. GT2014-26829.
40.
Connor
,
J. O.
, and
Lieuwen
,
T.
,
2012
, “
Recirculation Zone Dynamics of a Transversely Excited Swirl Flow and Flame
,”
Phys. Fluids
,
24
(
7
), p.
075107
.
41.
Chen
,
L. W.
,
Wang
,
Q.
, and
Zhang
,
Y.
,
2013
, “
Flow Characterisation of Diffusion Flame Under Non-Resonant Acoustic Excitation
,”
Exp. Therm. Fluid Sci.
,
45
(
1
), pp.
227
233
.
42.
Hao
,
Z.
,
Yan
,
H.
, and
Sheng
,
M.
,
2017
, “
Response of Non-Premixed Swirl-Stabilized Flames to Acoustic Excitation and Jet in Cross-Flow Perturbations
,”
Exp. Therm. Fluid Sci
.,
82
(
1
), pp.
124
135
.
43.
Oh
,
J.
,
Heo
,
P.
, and
Yoon
,
Y.
,
2009
, “
Acoustic Excitation Effect on NOx Reduction and Flame Stability in a Lifted Non-Premixed Turbulent Hydrogen Jet With Coaxial Air
,”
Int. J. Hydrogen Energy
,
34
(
18
), pp.
7851
7861
.
44.
Saito
,
M.
,
Sato
,
M.
, and
Nishimura
,
A.
,
1998
, “
Soot Suppression by Acoustic Oscillated Combustion
,”
Fuel
,
77
(
9–10
), pp.
973
978
.
45.
Greenblatt
,
D.
, and
Wygnanski
,
I. J.
,
2000
, “
The Control of Flow Separation by Periodic Excitation
,”
Prog. Aerosp. Sci.
,
36
(
7
), pp.
487
545
.
46.
Jufar
,
S. R.
,
Huang
,
R. F.
, and
Hsu
,
C. M.
,
2013
, “
Effects of Swirl on Flow and Mixing of Acoustically Excited Swirling Double-Concentric Jets
,”
Exp. Therm. Fluid Sci.
,
49
(
1
), pp.
40
50
.
47.
Hsu
,
C. M.
, and
Loretero
,
M. E.
,
2015
, “
Flame and Flow Characteristics of an Excited Non-Premixed Swirling Double-Concentric Flame
,”
Exp. Therm. Fluid Sci.
,
62
(
1
), pp.
58
69
.
48.
Ginevsky
,
A. S.
,
Vlasov
,
Y. V.
, and
Karavosov
,
R. K.
,
2004
,
Acoustic Control of Turbulent Jets
,
Springer-Verlag
,
Berlin
.
49.
Zuckerwar
,
A. J.
,
2002
,
Handbook of the Speed of Sound in Real Gases
,
Academic Press
,
San Diego, CA
.
50.
Shapiro
,
L. G.
, and
Stockman
,
G. C.
,
2001
,
Computer Vision
,
Prentice Hall
,
Upper Saddle River, NJ
.
51.
Huang
,
R. F.
,
Duc
,
L. M.
, and
Hsu
,
C. M.
,
2015
, “
Effect of Swirling Strength on Flow Characteristics of Swirling Double-Concentric Jets With a Dual-Disk Flow Controller
,”
Exp. Therm. Fluid Sci.
,
68
(
1
), pp.
612
624
.
52.
Huang
,
R. F.
,
Duc
,
L. M.
, and
Hsu
,
C. M.
,
2016
, “
Flow and Mixing Characteristics of Swirling Double-Concentric Jets Influenced by a Control Disk at Low Central Jet Reynolds Numbers
,”
Int. J. Heat Fluid Flow
,
62
(
2
), pp.
233
246
.
53.
Lyons
,
K. M.
,
2007
, “
Toward an Understanding of the Stabilization Mechanisms of Lifted Turbulent Jet Flames: Experiments
,”
Prog. Energy. Combust. Sci.
,
33
(
2
), pp.
211
231
.
54.
Periagaram
,
K.
,
2012
, “
Determination of Flame Characteristics in a Low Swirl Burner at Gas Turbine Conditions Through Reaction Zone Imaging
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
55.
Feikema
,
D.
,
Chen
,
R. H.
, and
Driscoll
,
J. F.
,
1990
, “
Enhancement of Flame Blowout Limits by the Use of Swirl
,”
Combust. Flame
,
80
(
2
), pp.
183
195
.
56.
Hirota
,
M.
,
Nakamura
,
Y.
, and
Saito
,
T.
,
2017
, “
Soot Control of Laminar Jet-Diffusion Lifted Flame Excited by High-Frequency Acoustic Oscillation
,”
J. Therm. Sci. Tech.
,
12
(
2
), pp. 1–10.https://www.jstage.jst.go.jp/article/jtst/12/2/12_2017jtst0024/_pdf/-char/ja
57.
Baillot
,
F.
, and
Demare
,
D.
,
2002
, “
Physical Mechanisms of a Lifted Nonpremixed Flame Stabilized in an Acoustic Field
,”
Combust. Sci. Technol.
,
174
(
8
), pp.
73
98
.
58.
Chao
,
Y. C.
,
Wu
,
C. Y.
,
Yuan
,
T.
, and
Cheng
,
T. S.
,
2002
, “
Stabilization Process of a Lifted Flame Tuned by Acoustic Excitation
,”
Combust. Sci. Technol.
,
174
(
5–6
), pp.
87
110
.
59.
Lackner
,
M.
,
Winter
,
F.
, and
Agarwal
,
A. K.
,
2010
,
Handbook of Combustion
,
Willey
,
Weinheim, Germany
.
60.
Tupikin
,
A. V.
,
Tretyakov
,
P. K.
, and
Venediktov
,
V. S.
,
2017
, “
Stabilization of a Lifted Diffusion Hydrocarbon Flame by an External Periodic Electric Field
,”
Combust. Explos. Shock Waves
,
53
(
1
), pp.
32
35
.
61.
Huang
,
R. F.
, and
Yen
,
S. C.
,
2008
, “
Aerodynamic Characteristics and Thermal Structure of Nonpremixed Reacting Swirling Wakes at Low Reynolds Numbers
,”
Combust. Flame
,
155
(
4
), pp.
539
556
.
62.
Jufar
,
S. R.
,
Huang
,
R. F.
, and
Hsu
,
C. M.
,
2013
, “
Effects of Pulsation Intensity on Flow and Mixing of Swirling Double Concentric Jets
,”
AIAA J.
,
51
(
8
), pp.
1932
1945
.
63.
Sheen
,
H. J.
,
Chen
,
W. J.
, and
Jeng
,
S. Y.
,
1996
, “
Recirculation Zone of Unconfined and Confined Annular Swirling Jets
,”
AIAA J.
,
34
(
3
), pp.
572
579
.
64.
Yang
,
H. F.
,
Hsu
,
C. M.
, and
Huang
,
R. F.
,
2014
, “
Controlling Plane-Jet Flame by a Fluidic Oscillation Technique
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041501
.
65.
Osvaldo
,
V. Z. M.
,
Nicholas
,
S.
,
Agustin
,
V. M.
, and
Daniel
,
D. R. U.
,
2014
, “
Flashback Avoidance in Swirling Flow Burners
,”
Ing., Invest. Tecnol.
,
15
(
4
), pp.
603
614
.
66.
Fritz
,
J.
,
Kroner
,
M.
, and
Sattelmayer
,
T.
,
2004
, “
Flashback in a Swirl Burner With Cylindrical Premixing Zone
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
276
283
.
67.
Kroner
,
M.
,
Fritz
,
J.
, and
Sattelmayer
,
T.
,
2002
, “
Flashback Limits for Combustion Induced Vortex Breakdown in a Swirl Burner
,”
ASME
Paper No. GT-2002-30075.
68.
Hoferichter
,
V.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
,
Kalantari
,
A.
,
Lewis
,
E. S.
, and
Donell
,
V. M.
,
2018
, “
Comparison of Two Methods to Predict Boundary Layer Flashback Limits of Turbulent Hydrogen-Air Jet Flames
,”
Flow Turbul. Combust.
,
100
(
3
), pp.
849
873
.
69.
Deng
,
K.
,
Shen
,
Z.
,
Wang
,
M.
,
Hu
,
Y.
, and
Zhong
,
Y. J.
,
2014
, “
Acoustic Excitation Effect on NO Reduction in a Laminar Methane-Air Flame
,”
Energy Procedia
,
61
(
1
), pp.
2890
2893
.
70.
Behery
,
R. E. E.
,
Mohamad
,
A. A.
, and
Kamal
,
M. M.
,
2006
, “
Combust. Enhancement a Gas Flare Using Acoustic Excitation
,”
Combust. Sci. Technol.
,
177
(
9
), pp.
1627
1659
.
You do not currently have access to this content.