Tumor microvascular damage caused by the alternate cooling and heating treatment was found much more severe than that of cooling or heating alone from our previous experimental studies. The induced stresses on the vessel wall are expected to play an important role in vascular damage. Both thermal and mechanical stresses are involved due to the rapid changes in temperature and blood reperfusion during the treatment. To investigate the stress effect, theoretical modeling and numerical simulations have been performed in the present study. Thermal stresses on the tumor microvessel wall during the freezing process are analyzed using the elastic models through the coupled field method. To simulate mechanical stresses induced by blood reperfusion, the fluid and structural mechanics are coupled on the interface between the blood flow domain and the vessel wall. Numerical results show that the thermal stress on the vessel wall is negative in the tumor center, indicating the compression effect during the freezing process. The magnitude of the radial stress reaches 2.5×107dyn/cm2. During the postheating process, the nonuniform stress distribution exists in the tortuous periphery vessel wall owing to the irregular structures, and higher stresses normally appear at the vessel bifurcations. Synergy of the thermal and mechanical stresses on the vessel wall play critical roles in damaging of the heterogeneous tumor vasculature during the alternate cooling and heating treatment. Results obtained in the present study are expected to help better understand the vascular injury process, and to develop a more effective thermal treatment protocol for tumor therapy.

1.
Kuz’menko
,
A. P.
,
Todor
,
I. N.
, and
Mosienko
,
V. S.
, 1990, “
The Effect of the Combined Use of Cryosurgery and Hyperthermia on an Experimental Tumor Process
,”
Eksp Onkol
0204-3564,
12
(
2
), pp.
60
61
.
2.
Osinsky
,
S. P.
,
Rikberg
,
A. B.
,
Bubnovskaja
,
L. N.
, and
Trushina
,
V. A.
, 1993, “
Tumour Ph Drop After Cryotreatment and Enhancement of Hyperthermia Antitumour Effect
,”
Int. J. Hyperthermia
0265-6736,
9
(
2
), pp.
297
301
.
3.
Shen
,
Y.
,
Liu
,
P.
,
Zhang
,
A. L.
, and
Xu
,
L. X.
, 2008, “
Study on Tumor Microvasculature Damage Induced by Alternate Cooling and Heating
,”
Ann. Biomed. Eng.
0090-6964,
36
(
8
), pp.
1409
1419
.
4.
Takahashi
,
D.
,
Takahashi
,
T.
,
Sone
,
K.
, and
Fukumoto
,
I.
, 2008, “
A Study of Cryosurgery-Hyperthermia Treatment System—The Effects of Hyperthermia Treatment Following Cryosurgery
,”
Int. J. Power Energy Syst.
0226-1472,
2
(
5
), pp.
1294
1303
.
5.
Dong
,
J. X.
,
Liu
,
P.
, and
Xu
,
L. X.
, 2009, “
Immunologic Response Induced by Synergistic Effect of Alternating Cooling and Heating of Breast Cancer
,”
Int. J. Hyperthermia
0265-6736,
25
(
1
), pp.
25
33
.
6.
Pegg
,
D. E.
,
Wusteman
,
M. C.
, and
Boylan
,
S.
, 1997, “
Fractures in Cryopreserved Elastic Arteries
,”
Cryobiology
0011-2240,
34
(
2
), pp.
183
192
.
7.
Rubinsky
,
B.
,
Cravalho
,
E. G.
, and
Mikic
,
B.
, 1980, “
Thermal Stresses in Frozen Organs
,”
Cryobiology
0011-2240,
17
(
1
), pp.
66
73
.
8.
Shi
,
X.
,
Datta
,
A. K.
, and
Mukherjee
,
Y.
, 1998, “
Thermal Stresses From Large Volumetric Expansion During Freezing of Biomaterials
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
6
), pp.
720
726
.
9.
Rabin
,
Y.
, and
Steif
,
P. S.
, 1996, “
Analysis of Thermal Stresses Around a Cryosurgical Probe
,”
Cryobiology
0011-2240,
33
(
2
), pp.
276
290
.
10.
Rabin
,
Y.
, and
Steif
,
P. S.
, 2000, “
Thermal Stress Modeling in Cryosurgery
,”
Int. J. Solids Struct.
0020-7683,
37
(
17
), pp.
2363
2375
.
11.
Zhang
,
A.
,
Cheng
,
S.
,
Gao
,
D.
, and
Xu
,
L. X.
, 2005, “
Thermal Stress Study of Two Different Artery Cryopreservation Methods
,”
CryoLetters
0143-2044,
26
(
2
), pp.
113
120
.
12.
Leung
,
J. H.
,
Wright
,
A. R.
,
Cheshire
,
N.
,
Crane
,
J.
,
Thom
,
S. A.
,
Hughes
,
A. D.
, and
Xu
,
Y.
, 2006, “
Fluid Structure Interaction of Patient Specific Abdominal Aortic Aneurysms: A Comparison with Solid Stress Models
,”
Biomed. Eng.
0006-2898,
5
(
33
), published online.
13.
Liu
,
P.
,
Zhang
,
A.
,
Xu
,
Y.
, and
Xu
,
L. X.
, 2005, “
Study of Non-Uniform Nanoparticle Liposome Extravasation in Tumour
,”
Int. J. Hyperthermia
0265-6736,
21
(
3
), pp.
259
270
.
14.
Intaglietta
,
M.
,
Richardson
,
D. R.
, and
Tompkins
,
W. R.
, 1971, “
Blood Pressure, Flow, and Elastic Properties in Microvessels of Cat Omentum
,”
Am. J. Physiol.
0002-9513,
221
(
3
), pp.
922
928
.
15.
Pennes
,
H. H.
, 1948, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Forearm
,”
J. Appl. Physiol.
8750-7587,
1
(
2
), pp.
93
122
.
16.
Zhang
,
A.
,
Xu
,
L. X.
,
Sandison
,
G. A.
, and
Zhang
,
J.
, 2003, “
A Microscale Model for Prediction of Breast Cancer Cell Damage During Cryosurgery
,”
Cryobiology
0011-2240,
47
(
2
), pp.
143
154
.
17.
Zhang
,
J.
,
Sandison
,
G. A.
,
Murthy
,
J. Y.
, and
Xu
,
L. X.
, 2005, “
Numerical Simulation for Heat Transfer in Prostate Cancer Cryosurgery
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
2
), pp.
279
294
.
18.
Rabin
,
Y.
, and
Shitzer
,
A.
, 1997, “
Combined Solution of the Inverse Stefan Problem for Successive Freezing/Thawing in Nonideal Biological Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
119
(
2
), pp.
146
152
.
19.
Elliott
,
G. D.
, and
Mcgrath
,
J. J.
, 1999, “
Freezing Response of Mammary Tissue: A Mathematical Study
,”
Proceedings of the ASME Advances in Heat and Mass Transfer in Biotechnology
, HTD-Vol.
363
/BED-Vol. 44, pp.
59
64
.
20.
Song
,
C. W.
,
Kang
,
M. S.
,
Rhee
,
J. G.
, and
Levitt
,
S. H.
, 1980, “
Effect of Hyperthermia on Vascular Function in Normal and Neoplastic Tissues
,”
Ann. N.Y. Acad. Sci.
0077-8923,
335
, pp.
35
47
.
21.
Zhang
,
A.
,
Cheng
,
S.
,
Lei
,
D.
,
He
,
L.
,
Luo
,
D.
, and
Gao
,
D.
, 2002, “
An Experimental Study of the Mechanical Behavior of Frozen Arteries at Low Temperatures
,”
CryoLetters
0143-2044,
23
(
6
), pp.
389
396
.
22.
Hua
,
Z. Z.
,
Xu
,
H. Y.
,
Zhou
,
G. Y.
,
Liu
,
J. F.
,
Huang
,
H. M.
, and
Ding
,
W. X.
, 2001, “
Analyses of Thermal Stress and Fracture During Cryopreservation of Blood Vessel
,”
Sci. China, Ser. E: Technol. Sci.
1006-9321,
44
(
2
), pp.
158
163
.
23.
He
,
X.
, and
Bischof
,
J. C.
, 2005, “
Analysis of Thermal Stress in Cryosurgery of Kidneys
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
4
), pp.
656
661
.
24.
Devireddy
,
R. V.
,
Smith
,
D. J.
, and
Bischof
,
J. C.
, 2002, “
Effect of Microscale Mass Transport and Phase Change on Numerical Prediction of Freezing in Biological Tissues
,”
ASME J. Heat Transfer
0022-1481,
124
(
2
), pp.
365
374
.
25.
Shi
,
X.
,
Datta
,
A. K.
, and
Throop
,
J. A.
, 1998, “
Mechanical Property Changes During Freezing of a Biomaterial
,”
Trans. ASAE
0001-2351,
41
(
5
), pp.
1407
1414
.
26.
Kong
,
G.
,
Braun
,
R. D.
, and
Dewhirst
,
M. W.
, 2001, “
Characterization of the Effect of Hyperthermia on Nanoparticle Extravasation From Tumor Vasculature
,”
Cancer Res.
0008-5472,
61
(
7
), pp.
3027
3032
.
27.
Windberger
,
U.
,
Bartholovitsch
,
A.
,
Plasenzotti
,
R.
,
Korak
,
K. J.
, and
Heinze
,
G.
, 2003, “
Whole Blood Viscosity, Plasma Viscosity and Erythrocyte Aggregation in Nine Mammalian Species: Reference Values and Comparison of Data
,”
Exp. Physiol.
0958-0670,
88
(
3
), pp.
431
440
.
28.
Endrich
,
B.
,
Zweifach
,
B. W.
,
Reinhold
,
H. S.
, and
Intaglietta
,
M.
, 1979, “
Quantitative Studies of Microcirculatory Function in Malignant Tissue: Influence of Temperature on Microvascular Hemodynamics During the Early Growth of the Ba 1112 Rat Sarcoma
,”
Int. J. Radiat. Oncol., Biol., Phys.
0360-3016,
5
(
11–12
), pp.
2021
2030
.
29.
Jain
,
R. K.
, 1987, “
Transport of Molecules in the Tumor Interstitium: A Review
,”
Cancer Res.
0008-5472,
47
(
12
), pp.
3039
3051
.
30.
Jain
,
R. K.
, 1988, “
Determinants of Tumor Blood Flow: A Review
,”
Cancer Res.
0008-5472,
48
(
10
), pp.
2641
2658
.
31.
Timoshenko
,
S.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
McGraw-Hill
,
New York
, Chap. 14.
32.
Fung
,
Y. C.
, 1996,
Biomechanics: Circulation
,
Springer
,
New York
, Chap. 3.
33.
Liu
,
Q.
,
Mirc
,
D.
, and
Fu
,
B. M.
, 2008, “
Mechanical Mechanisms of Thrombosis in Intact Bent Microvessels of Rat Mesentery
,”
J. Biomech.
0021-9290,
41
(
12
), pp.
2726
2734
.
34.
Rabin
,
Y.
, and
Steif
,
P. S.
, 1998, “
Thermal Stresses in a Freezing Sphere and Its Application to Cryobiology
,”
Trans. ASME
0097-6822,
65
(
2
), pp.
328
333
.
35.
Lin
,
S.
,
Gao
,
D. Y.
, and
Yu
,
X. C.
, 1990, “
Thermal Stresses Induced by Water Solidification in a Cylindrical Tube
,”
ASME J. Heat Transfer
0022-1481,
112
(
4
), pp.
1079
1082
.
36.
Rabin
,
Y.
,
Olson
,
P.
,
Taylor
,
M. J.
,
Steif
,
P. S.
,
Julian
,
T. B.
, and
Wolmark
,
N.
, 1997, “
Gross Damage Accumulation on Frozen Rabbit Liver Due to Mechanical Stress at Cryogenic Temperatures
,”
Cryobiology
0011-2240,
34
(
4
), pp.
394
405
.
37.
Rabin
,
Y.
,
Steif
,
P. S.
,
Taylor
,
M. J.
,
Julian
,
T. B.
, and
Wolmark
,
N.
, 1996, “
An Experimental Study of the Mechanical Response of Frozen Biological Tissues at Cryogenic Temperatures
,”
Cryobiology
0011-2240,
33
(
4
), pp.
472
482
.
38.
Swayne
,
G. T.
,
Smaje
,
L. H.
, and
Bergel
,
D. H.
, 1989, “
Distensibility of Single Capillaries and Venules in the Rat and Frog Mesentery
,”
Int. J. Microcirc.: Clin. Exp.
0167-6865,
8
(
1
), pp.
25
42
.
39.
Rabb
,
J. M.
,
Renaud
,
M. L.
,
Brandt
,
P. A.
, and
Witt
,
C. W.
, 1974, “
Effect of Freezing and Thawing on the Microcirculation and Capillary Endothelium of the Hamster Cheek Pouch
,”
Cryobiology
0011-2240,
11
(
6
), pp.
508
518
.
40.
Zhang
,
A.
,
Xu
,
L. X.
,
Sandison
,
G. A.
, and
Cheng
,
S.
, 2006, “
Morphological Study of Endothelial Cells During Freezing
,”
Phys. Med. Biol.
0031-9155,
51
(
23
), pp.
6047
6060
.
41.
Lovelock
,
J. E.
, 1953, “
The Haemolysis of Human Red Blood-Cells by Freezing and Thawing
,”
Biochim. Biophys. Acta
0006-3002,
10
(
3
), pp.
414
426
.
42.
Manson
,
P. N.
,
Jesudass
,
R.
,
Marzella
,
L.
,
Bulkley
,
G. B.
,
Im
,
M. J.
, and
Narayan
,
K. K.
, 1991, “
Evidence for an Early Free Radical-Mediated Reperfusion Injury in Frostbite
,”
Free Radic Biol. Med.
0891-5849,
10
(
1
), pp.
7
11
.
You do not currently have access to this content.