Abstract

The demand for quality dried products necessitates cost effective and innovative drying techniques that will improve its market value. The slow drying rate, weather dependency, and moisture reabsorption have been identified as the major challenges of solar drying operation. To address these shortcomings, hybrid solar drying systems have been recommended for the drying of various agricultural materials and other porous products. Designing a better drying system to accommodate thermal storage materials requires detailed analysis, which could be achieved through numerical simulation. Therefore, the numerical simulation of heat and mass transfer in a forced convection solar drying system integrated with black-coated firebrick sensible thermal storage materials (STSM) for the cocoa beans, locust beans, cereal grains, etc., was investigated under no-load conditions. The equations governing the fluid flow for a three-dimensional solar drying system were solved using the finite volume method with the aid of ansys, the computational fluid dynamics software to comprehend the dynamic and thermal behavior of the airflow within the dryer. The experimental maximum temperature values of 96.9 °C and 77.3 °C for the collector and drying chamber were in agreement with the simulated maximum collector and drying chamber temperatures of 116.9 °C and 80 °C respectively. The designed solar drying system with the incorporated STSM showed the capacity of raising the temperature of the air within the drying chamber to 3–37 °C above ambient temperature between 01:00 p.m. and 10:00 p.m. The agreement of the simulated dryer model with the experimental one is an indication that the developed dryer is suitable for drying cocoa, locust beans, fish, cereal grains, and some other agricultural products within an acceptable period based on the previous studies and therefore, the drying system is recommended to avoid the shortcomings associated with traditional/open sun drying.

References

1.
Pangavhane
,
D. R.
,
Sawhney
,
R.
, and
Sarsavadia
,
P.
,
2002
, “
Design, Development and Performance Testing of a New Natural Convection Solar Dryer
,”
Energy
,
27
(
6
), pp.
579
590
.
2.
Simate
,
I.
,
2003
, “
Optimization of Mixed-Mode and Indirect-Mode Natural Convection Solar Dryers
,”
Renewable Energy
,
28
(
3
), pp.
435
453
.
3.
Hallak
,
H.
,
Hillal
,
J.
,
Hilal
,
F.
, and
Rahhal
,
R.
,
1996
, “
The Staircase Solar Dryer: Design and Characteristics
,”
Renewable Energy
,
7
(
2
), pp.
177
183
.
4.
Montero
,
I.
,
Blanco
,
J.
,
Miranda
,
T.
,
Rojas
,
S.
, and
Celma
,
A.
,
2010
, “
Design, Construction and Performance Testing of a Solar Dryer for Agroindustrial By-Products
,”
Energy Convers. Manage.
,
51
(
7
), pp.
1510
1521
.
5.
Seveda
,
M.
,
2012
, “
Design and Development of Walk-In Type Hemicylindrical Solar Tunnel Dryer for Industrial Use
,”
Int. Sch. Res. Notices
,
2012
(
890820
), pp.
1
9
.
6.
Komolafe
,
C. A.
,
Waheed
,
M. A.
,
Ezekwem
,
C.
, and
Hii
,
C. L.
,
2022
, “
Numerical Analysis of Three-Dimensional Heat and Mass Transfer in Cocoa Beans Under a Solar Drying Condition With a Thermal Storage Material
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
7
), pp.
1
5
.
7.
Komolafe
,
C. A.
,
Ojediran
,
J. O.
,
Ajao
,
F. O.
,
Dada
,
O. A.
,
Afolabi
,
Y. T.
, and
Oluwaleye
,
I. O.
,
2019
, “
Modelling of Moisture Diffusivity During Solar Drying of Locust Beans With Thermal Storage Material Under Forced and Natural Convection Mode
,”
Case Stud. Therm. Eng.
,
15
(
100542
), pp.
1
11
.
8.
Komolafe
,
C. A.
,
Waheed
,
M. A.
,
Kuye
,
S. I.
,
Adewumi
,
B. A.
,
Oluwaleye
,
I. O.
, and
Olayanju
,
T. M. A.
,
2020
, “
Sun Drying of Cocoa With Firebrick Thermal Storage Materials
,”
Int. J. Energy Res.
,
44
(
8
), pp.
7015
7025
.
9.
Komolafe
,
C. A.
,
Waheed
,
M. A.
,
Kuye
,
S. I.
,
Adewumi
,
B. A.
, and
Adejumo
,
A. O. D.
,
2021
, “
Thermodynamic Analysis of Forced Convective Solar Drying of Cocoa With Black Coated Sensible Thermal Storage Material
,”
Case Stud. Therm. Eng.
,
26
(
101140
), pp.
1
12
.
10.
Dina
,
S. F.
,
Ambarita
,
H.
,
Napitupulu
,
F. H.
, and
Kawai
,
H.
,
2015
, “
Study on Effectiveness of Continuous Solar Dryer Integrated With Desiccant Thermal Storage for Drying Cocoa Beans
,”
Case Stud. Therm. Eng.
,
5
, pp.
32
40
.
11.
Komolafe
,
W.
,
2018
, “
Design and Fabrication of a Forced Convection Solar Dryer Integrated With Heat Storage Materials
,”
Ann. Chim.: Sci. Mater.
,
42
(
1
), pp.
215
23
.
12.
Rabha
,
D.
, and
Muthukuma
,
P.
,
2018
, “
Feasibility Study of the Application of a Latent Heat Storage in a Solar Dryer for Drying Green Chili
,”
Proceedings of 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE)
,
Shilong, China
,
June 1–2
.
13.
Bhardwaj
,
A. K.
,
Kumar
,
R.
,
Chauhan
,
R.
, and
Kumar
,
S.
,
2020
, “
Experimental Investigation and Performance Evaluation of a Novel Solar Dryer Integrated With a Combination of SHS and PCM for Drying Chilli in the Himalayan Region
,”
Therm. Sci. Eng. Prog.
,
20
(
100713
), pp.
1
8
.
14.
Atalay
,
H.
,
2020
, “
Assessment of Energy and Cost Analysis of Packed Bed and Phase Change Material Thermal Energy Storage Systems for the Solar Energy-Assisted Drying Process
,”
Sol. Energy
,
198
, pp.
124
138
.
15.
Natarajan
,
K.
,
Thokchom
,
S. S.
,
Verma
,
T. N.
, and
Nashine
,
P.
,
2017
, “
Convective Solar Drying of Vitis Vinifera & Momordica Charantia Using Thermal Storage Materials
,”
Renewable Energy
,
113
, pp.
1193
1200
.
16.
Lamrani
,
D.
,
2020
, “
Thermal Performance and Economic Analysis of an Indirect Solar Dryer of Wood Integrated With Packed-Bed Thermal Energy Storage: A Case Study of Solar Thermal Applications
,”
Dry. Technol.
,
39
(
10
), pp.
1371
1388
.
17.
Iranmanesh
,
M.
,
Akhijahani
,
H. S.
, and
Jahromi
,
M. S. B.
,
2020
, “
CFD Modeling and Evaluation the Performance of a Solar Cabinet Dryer Equipped With Evacuated Tube Solar Collector and Thermal Storage System
,”
Renewable Energy
,
145
, pp.
1192
1213
.
18.
Bhardwaj
,
A.
,
Kumar
,
R.
,
Kumar
,
S.
,
Goel
,
B.
, and
Chauhan
,
R.
,
2021
, “
Energy and Exergy Analyses of Drying Medicinal Herb in a Novel Forced Convection Solar Dryer Integrated With SHSM and PCM
,”
Sustainable Energy Technol. Assess.
,
45
, pp.
1
16
.
19.
Gopinath
,
G.
,
Muthuvel
,
S.
,
Muthukannan
,
M.
,
Sudhakarapandian
,
R.
,
Kumar
,
B. P.
, and
Kumar
,
C. S.
,
2022
, “
Design, Development, and Performance Testing of Thermal Energy Storage Based Solar Dryer System for Seeded Grapes
,”
Sustainable Energy Technol. Assess.
,
51
, p.
101923
.
20.
Lamrani
,
D.
,
2020
, “
Modelling and Simulation of a Hybrid Solar-Electrical Dryer of Wood Integrated With Latent Heat Thermal Energy Storage System
,”
Ther. Sci. Eng. Prog.
,
18
(
100545
), pp.
1
12
.
21.
Kumar
,
D.
,
Mahanta
,
P.
, and
Kalita
,
P.
,
2020
, “
Energy and Exergy Analysis of a Natural Convection Dryer With and Without Sensible Heat Storage Medium
,”
J. Energy Storage
,
29
, p.
101481
.
22.
Vijayan
,
S.
,
Arjunan
,
T. V.
, and
Kumar
,
A.
,
2020
, “
Exergo-Environmental Analysis of an Indirect Forced Convection Solar Dryer for Drying Bitter Gourd Slices
,”
Renewable Energy
,
146
, pp.
2210
2223
.
23.
Khouya
,
D.
,
2019
, “
Computational Drying Model for Solar Kiln With Latent Heat Energy Storage: Case Studies of Thermal Application
,”
Renewable Energy
,
130
, pp.
796
813
.
24.
Oztop
,
A.
,
2008
, “
Numerical and Experimental Analysis of Moisture Transfer for Convective Drying of Some Products
,”
Int. Commun. Heat Mass Transfer
,
35
(
2
), pp.
169
177
.
25.
Akharume
,
F.
,
Adeyemi
,
S.
,
and Obayopo
,
S.
, and
A
,
S.
,
2019
, “
Study on the Numerical Simulations and Experimental Validation of a Hybrid Solar Dryer for Cocoa
,”
J. Postharvest Technol.
,
7
(
3
), pp.
96
114A
.
26.
Iguaz
,
A.
,
Esnoz
,
A.
,
Martı´nez
,
G.
,
López
,
A.
, and
Vırseda
,
P.
,
2003
, “
Mathematical Modelling and Simulation for the Drying Process of Vegetable Wholesale By-Products in a Rotary Dryer
,”
J. Food Eng.
,
59
(
2–3
), pp.
151
160
.
27.
Białobrzewski
,
I.
,
2006
, “
Simultaneous Heat and Mass Transfer in Shrinkable Apple Slab During Drying
,”
Dry. Technol.
,
24
(
5
), pp.
551
559
.
28.
Kaya
,
A.
,
Aydın
,
O.
, and
Dincer
,
I.
,
2008
, “
Experimental and Numerical Investigation of Heat and Mass Transfer During Drying of Hayward Kiwi Fruits (Actinidia Deliciosa Planch)
,”
J. Food Eng.
,
88
(
3
), pp.
323
330
.
29.
Song
,
Y.
,
2009
, “
Experiment and Numerical Simulation of Heat and Mass Transfer During a Spray Freeze-Drying Process of Ovalbumin in a Tray
,”
Heat Mass Transfer
,
46
(
1
), pp.
39
51
.
30.
Mohan
,
T.
, “
Three Dimensional Numerical Modeling of Simultaneous Heat and Moisture Transfer in a Moist Object Subjected to Convective Drying
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4638
4650
.
31.
Villa-Corrales
,
L.
,
Flores-Prieto
,
J.
,
Xamán-Villaseñor
,
J.
, and
García-Hernández
,
E.
,
2010
, “
Numerical and Experimental Analysis of Heat and Moisture Transfer During Drying of Ataulfo Mango
,”
J. Food Eng.
,
98
(
2
), pp.
198
206
.
32.
Sabarez
,
H. T.
,
2012
, “
Computational Modelling of the Transport Phenomena Occurring During Convective Drying of Prunes
,”
J. Food Eng.
,
111
(
2
), pp.
279
288
.
33.
Golestani
,
R.
,
Raisi
,
A.
, and
Aroujalian
,
A.
,
2013
, “
Mathematical Modeling on Air Drying of Apples Considering Shrinkage and Variable Diffusion Coefficient
,”
Dry. Technol.
,
31
(
1
), pp.
40
51
.
34.
Ranjbaran
,
M.
,
Emadi
,
B.
, and
Zare
,
D.
,
2014
, “
CFD Simulation of Deep-Bed Paddy Drying Process and Performance
,”
Dry. Technol.
,
32
(
8
), pp.
919
934
.
35.
Chandramohan
,
V.
,
2016
, “
Numerical Prediction and Analysis of Surface Transfer Coefficients on Moist Object During Heat and Mass Transfer Application
,”
Heat Transfer Eng.
,
37
(
1
), pp.
53
63
.
36.
Liu
,
Z.
,
2015
, “
Numerical Simulation and Experimental Study of Deep Bed Corn Drying Based on Water Potential
,”
Math. Probl. Eng.
,
2015
(
539846
), pp.
1
13
.
37.
Kim
,
D.
,
Son
,
G.
, and
Kim
,
S.
,
2016
, “
Numerical Analysis of Convective Drying of a Moist Object With Combined Internal and External Heat and Mass Transfer
,”
J. Mech. Sci. Technol.
,
30
(
2
), pp.
733
740
.
38.
Kahveci
,
K.
,
2017
, “
Modeling and Numerical Simulation of Simultaneous Heat and Mass Transfer During Convective Drying of Porous Materials
,”
Text. Res. J.
,
87
(
5
), pp.
617
630
.
39.
Lemus-Mondaca
,
R. A.
,
Vega-Gálvez
,
A.
,
Zambra
,
C. E.
, and
Moraga
,
N. O.
,
2017
, “
Modeling 3D Conjugate Heat and Mass Transfer for Turbulent Air Drying of Chilean Papaya in a Direct Contact Dryer
,”
Heat Mass Transfer
,
53
(
1
), pp.
11
24
.
40.
Khaldi
,
S.
,
Korti
,
A. N.
, and
Abboudi
,
S.
,
2017
, “
Applying CFD for Studying the Dynamic and Thermal Behavior of Solar Chimney Drying System With Reversed Absorber
,”
Int. J. Food Eng.
,
13
(
11
), pp.
1
11
.
41.
Saxena
,
G.
,
2020
, “
Performance Evaluation and Drying Kinetics for Solar Drying of Hygroscopic Crops in Vacuum Tube Assisted Hybrid Dryer
,”
ASME J. Sol. Energy Eng.
,
142
(
5
), p.
051009
.
42.
Yadav
,
C.
,
2018
, “
Numerical Analysis on Thermal Energy Storage Device With Finned Copper Tube for an Indirect Type Solar Drying System
,”
ASME J. Sol. Energy Eng.
,
140
(
3
), p.
031009
.
43.
Roman-Roldan
,
N.
,
Lopez-Ortiz
,
A.
,
Ituna-Yudonago
,
J.
,
Garcia-Valladares
,
O.
, and
Pilatowsky-Figuero
,
I.
,
2019
, “
Computational Fluid Dynamic Analysis of Heat Transfer in a Greenhouse Solar Dryer “Chapel-Type” Coupled to an Air Solar Heating System
,”
Energy Sci. Eng.
,
7
(
4
), pp.
1123
1139
.
44.
Defraeye
,
T.
,
2014
, “
Advanced Computational Modelling of Drying Processes—A Review
,”
Appl. Energy
,
131
, pp.
323
344
.
45.
Vásquez
,
J.
,
Reyes
,
A.
, and
Pailahueque
,
N.
,
2019
, “
Modeling, Simulation and Experimental Validation of a Solar Dryer for Agro-Products With Thermal Energy Storage System
,”
Renewable Energy
,
139
, pp.
1375
1390
.
46.
Zambra
,
C.
,
Moraga
,
N.
,
Rosales
,
C.
, and
Lictevout
,
E.
,
2012
, “
Unsteady 3D Heat and Mass Transfer Diffusion Coupled With Turbulent Forced Convection for Compost Piles With Chemical and Biological Reactions
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6695
6704
.
47.
Launder
,
S.
,
1983
,
The Numerical Computation of Turbulent Flows, in Numerical Prediction of Flow, Heat Transfer, Turbulence, and Combustion
,
Elsevier
,
New York
, pp.
96
116
.
48.
Romero
,
V. M.
,
Cerezo
,
E.
,
Garcia
,
M. I.
, and
Sanchez
,
M. H.
,
2014
, “
Simulation and Validation of Vanilla Drying Process in an Indirect Solar Dryer Prototype Using CFD Fluent Programme
,”
Energy Procedia
,
57
, pp.
1651
1658
.
49.
Venkatesh
,
V.
,
2016
, “
Performance Evaluation of Multipurpose Solar Heating System
,”
Mech. Mech. Eng.
,
20
(
4
), pp.
359
370
.
50.
Komolafe
,
C. A.
,
2019
, “
Development of Numerical and Experimental Cocoa-Beans Solar Dryer
,”
Ph.D. thesis
,
Federal University of Agriculture
,
Abeokuta, Nigeria
.
51.
Li
,
Z.
,
Tang
,
D.
,
Du
,
J.
, and
Li
,
T.
,
2011
, “
Study on the Radiation Flux and Temperature Distributions of the Concentrator-Reciever System in a Solar Dish/Stirling Power Facility
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1780
1789
.
52.
Van Doormal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.
53.
Komolafe
,
C. A.
,
Oluwaleye
,
I. O.
,
Awogbemi
,
O.
, and
Osueke
,
C. O.
,
2019
, “
Experimental Investigation and Thermal Analysis of Solar Air Heater Having Rectangular Rib Roughness on the Absorber Plate
,”
Case Stud. Therm. Eng.
,
14
(
100442
), pp.
1
9
.
54.
Dhanushkodi
,
S.
,
Wilson
,
V. H.
, and
Sudhakar
,
K.
,
2015
, “
Simulation of Solar Biomass Hybrid Dryer for Drying Cashew Kernel
,”
Pelagia Res. Lib. Adva. Appl. Sci. Res.
,
6
(
8
), pp.
148
154
.
55.
Alonge
,
O.
,
2019
, “
Computational Fluid Dynamic and Experimental Analysis of Direct Solar Dryer for Fish
,”
Agric. Eng. Int. CIGR
,
21
(
2
), pp.
108
117
.
56.
Maria
,
C. B.
,
Ferreira
,
A. G.
,
Cabezas-Gommez
,
L.
,
Hanriot
,
S. M.
, and
Martins
,
T. O.
,
2012
, “
Simulation of the Airflow Inside a Hybrid Dryer
,”
Int. J. Res. Rev. Appl. Sci.
,
10
(
3
), pp.
382
389
.
57.
Tarigan
,
E.
,
2018
, “
Mathematical Modeling and Simulation of a Solar Agricultural Dryer With Back-Up Biomass Burner and Thermal Storage
,”
Case Stud. Therm. Eng.
,
12
, pp.
149
165
.
You do not currently have access to this content.