Abstract

Phase-change materials (PCMs) can be used to develop thermal energy storage systems as they absorb large amount of latent heat nearly at a constant temperature when changing phase from a solid to a liquid. To prevent leakage when in a liquid state, PCM is shape stabilized in a polymer matrix of high-density polyethylene (HDPE). The present research explores the injection-molded mechanical and thermal properties of different PCM/HDPE composite ratios. The tensile strength and modulus of elasticity at room temperature and with the PCM fully melted within the composite are measured. Additionally, the hardness, latent heat of fusion, phase-change temperature, and thermal conductivity are investigated. An analysis of microstructures of the composite is used to support the findings. The PCM within the PCM/HDPE composite gives it the benefit of thermal storage but causes a decrease in mechanical properties.

References

1.
Nazir
,
H.
,
Batool
,
M.
,
Bolivar Osorio
,
F. J.
,
Isaza-Ruiz
,
M.
,
Xu
,
X.
,
Vignarooban
,
K.
,
Phelan
,
P.
,
Inamuddin
, and
A. M.
Kannan
,
2019
, “
Recent Developments in Phase Change Materials for Energy Storage Applications: A Review
,”
Int. J. Heat Mass Transfer
,
129
, pp.
491
523
.
2.
Morovat
,
N.
,
Athienitis
,
A. K.
,
Candanedo
,
J. A.
, and
Dermardiros
,
V.
,
2019
, “
Simulation and Performance Analysis of an Active PCM-Heat Exchanger Intended for Building Operation Optimization
,”
Energy Build.
,
199
, pp.
47
61
.
3.
Chinnasamy
,
V.
, and
Appukuttan
,
S.
,
2019
, “
Preparation and Thermal Properties of Lauric Acid/Myristyl Alcohol as a Novel Binary Eutectic Phase Change Material for Indoor Thermal Comfort
,”
Energy Storage
,
1
(
5
), p.
e80
.
4.
Veerakumar
,
C.
, and
Sreekumar
,
A.
,
2020
, “
Thermo-Physical Investigation and Experimental Discharge Characteristics of Lauryl Alcohol as a Potential Phase Change Material for Thermal Management in Buildings
,”
Renew. Energy
,
148
, pp.
492
503
.
5.
Verma
,
R.
,
Kumar
,
S.
,
Rakshit
,
D.
, and
Premachandran
,
B.
,
2023
, “
Design and Optimization of Energy Consumption for a Low-Rise Building With Seasonal Variations Under Composite Climate of India
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011006
.
6.
Freeman
,
T.
,
Nawaz
,
K.
,
Manglik
,
R.
,
Rodriguez
,
R.
, and
Boetcher
,
S.
,
2021
, “
Additively Manufactured Polymer-Encapsulated Phase-Change Material Heat Exchangers for Light Commercial and Residential Thermal Energy Storage
,”
2021 ASHRAE Annual Conference
,
Virtual
,
June
.
7.
Boetcher
,
S. K. S.
,
2022
, “Cool Thermal Energy Storage,”
Solid–Liquid Thermal Energy Storage
,
M.
Mobedi
,
K.
Hooman
, and
W.-Q.
Tao
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
243
256
.
8.
Ma
,
Z.
,
Wang
,
X.
,
Davenport
,
P.
,
Gifford
,
J.
, and
Martinek
,
J.
,
2022
, “
Preliminary Component Design and Cost Estimation of a Novel Electric-Thermal Energy Storage System Using Solid Particles
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
030901
.
9.
Yue
,
C.
,
Gao
,
P.
,
Xu
,
Y.
, and
Schaefer
,
L. A.
,
2022
, “
Investigation on a Solar Thermal Power Plant With a Packed Bed Heat Storage Unit
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041004
.
10.
Huang
,
M. J.
,
Eames
,
P. C.
, and
Norton
,
B.
,
2006
, “
Phase Change Materials for Limiting Temperature Rise in Building Integrated Photovoltaics
,”
Sol. Energy
,
80
(
9
), pp.
1121
1130
.
11.
Huang
,
M. J.
,
Eames
,
P. C.
, and
Norton
,
B.
,
2006
, “
Comparison of a Small-Scale 3D PCM Thermal Control Model With a Validated 2D PCM Thermal Control Model
,”
Sol. Energy Mater. Sol. Cells
,
90
(
13
), pp.
1961
1972
.
12.
Park
,
J.
,
Kim
,
T.
, and
Leigh
,
S. B.
,
2014
, “
Application of a Phase-Change Material to Improve the Electrical Performance of Vertical-Building-Added Photovoltaics Considering the Annual Weather Conditions
,”
Sol. Energy
,
105
, pp.
561
574
.
13.
Xie
,
L.
,
Lv
,
Y.
,
Lu
,
J.
,
Li
,
Y.
,
Liu
,
S.
,
Zou
,
Q.
, and
Wang
,
X.
,
2017
, “
Heating Storage Performance of a Water Tank–Combined Phase Change Material: An Experimental Case Study
,”
Adv. Mech. Eng.
,
9
(
10
), p.
168781401772407
.
14.
Elavarasan
,
R. M.
,
Singh
,
P.
,
Leoponraj
,
S.
,
Khanna
,
S.
, and
Chandran
,
M.
,
2022
, “
Solar PhotoVoltaics Integrated With Hydrated Salt-Based Phase Change Material
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051004
.
15.
Cheng
,
X.
,
Zou
,
Z.
,
Yu
,
G.
,
Ma
,
G.
,
Ye
,
H.
,
Li
,
Y.
, and
Liu
,
H.
,
2021
, “
Development and Performance of Roof-Based Building-Integrated Photovoltaic-Thermal Systems: A Review
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041009
.
16.
Moreno
,
S. F.
,
Hinojosa
,
J.
,
Maytorena
,
V. M.
,
Navarro
,
J. M.
, and
Vazquez
,
A.
,
2023
, “
Thermal Performance and Water Production in a Solar Still With an Energy Storage Material Under Different Concentrations of Salt
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031011
.
17.
Sampathkumar
,
A.
,
Suraparaju
,
S. K.
, and
Natarajan
,
S. K.
,
2023
, “
Enhancement of Yield in Single Slope Solar Still by Composite Heat Storage Material—Experimental and Thermo-Economic Assessment
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021005
.
18.
Canneto
,
G.
,
Tizzoni
,
A. C.
,
Sau
,
S.
,
Mansi
,
E.
,
Gaggioli
,
W.
,
Spadoni
,
A.
,
Corsaro
,
N.
, et al.,
2023
, “
Thermocline Thermal Storage for Concentrated Solar Power Applications: Characterization of Novel Nitrate Salt Mixtures
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031001
.
19.
Keiser
,
J. R.
,
He
,
X.
,
Sulejmanovic
,
D.
,
Qu
,
J.
,
Robb
,
K. R.
, and
Oldinski
,
K.
,
2023
, “
Material Selection and Corrosion Studies of Candidate Bearing Materials for Use in Molten Chloride Salt
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021001
.
20.
Zhang
,
Y.
,
Wang
,
X.
,
Hu
,
Q.
,
Li
,
P.
,
Liu
,
Q.
, and
Xu
,
B.
,
2022
, “
Experimental Study of Eutectic Molten Salts NaCl/KCl/ZnCl2 Heat Transfer Inside a Smooth Tube for High-Temperature Application
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
044501
.
21.
Wang
,
X.
,
Rincon
,
J. D.
,
Li
,
P.
,
Zhao
,
Y.
, and
Vidal
,
J.
,
2021
, “
Thermophysical Properties Experimentally Tested for NaCl-KCl-MgCl2 Eutectic Molten Salt as a Next-Generation High-Temperature Heat Transfer Fluids in Concentrated Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041005
.
22.
Burgess
,
S.
,
Wang
,
X.
,
Rahbari
,
A.
, and
Hangi
,
M.
,
2022
, “
Optimisation of a Portable Phase-Change Material (PCM) Storage System for Emerging Cold-Chain Delivery Applications
,”
J. Energy Storage
,
52
, p.
104855
.
23.
Sarkar
,
S.
,
Mestry
,
S.
, and
Mhaske
,
S.
,
2022
, “
Developments in Phase Change Material (PCM) Doped Energy Efficient Polyurethane (PU) Foam for Perishable Food Cold-Storage Applications: A Review
,”
J. Energy Storage
,
50
, p.
104620
.
24.
Zhan
,
D.
,
Zhao
,
L.
,
Yu
,
Q.
,
Zhang
,
Y.
,
Wang
,
Y.
,
Li
,
G.
,
Lu
,
G.
,
Zhan
,
D.
, and
Li
,
M.
,
2021
, “
Phase Change Material for the Cold Storage of Perishable Products: From Material Preparation to Material Evaluation
,”
J. Mol. Liq.
,
342
, p.
117455
.
25.
Ghodrati
,
A.
,
Zahedi
,
R.
, and
Ahmadi
,
A.
,
2022
, “
Analysis of Cold Thermal Energy Storage Using Phase Change Materials in Freezers
,”
J. Energy Storage
,
51
, p.
104433
.
26.
Akeiber
,
H.
,
Nejat
,
P.
,
Majid
,
M. Z. A.
,
Wahid
,
M. A.
,
Jomehzadeh
,
F.
,
Zeynali Famileh
,
I.
,
Calautit
,
J. K.
,
Hughes
,
B. R.
, and
Zaki
,
S. A.
,
2016
, “
A Review on Phase Change Material (PCM) for Sustainable Passive Cooling in Building Envelopes
,”
Renew. Sustain. Energy Rev.
,
60
, pp.
1470
1497
.
27.
Graham
,
M.
,
Shchukina
,
E.
,
Castro
,
P. F. D.
, and
Shchukin
,
D.
,
2016
, “
Nanocapsules Containing Salt Hydrate Phase Change Materials for Thermal Energy Storage
,”
J. Mater. Chem. A
,
4
(
43
), pp.
16906
16912
.
28.
Vasu
,
A.
,
Hagos
,
F. Y.
,
Noor
,
M.
,
Mamat
,
R.
,
Azmi
,
W.
,
Abdullah
,
A. A.
, and
Ibrahim
,
T. K.
,
2017
, “
Corrosion Effect of Phase Change Materials in Solar Thermal Energy Storage Application
,”
Renew. Sustain. Energy Rev.
,
76
, pp.
19
33
.
29.
Luo
,
K.
,
Zeng
,
Z.
,
Ye
,
W.
,
Wu
,
D.
, and
Liu
,
J.
,
2023
, “
Effect of the Added Thickening Agents on the Thermal and Physical Properties of the Nucleating Agent-Free Na2HPO4 12H2O
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021010
.
30.
Aulakh
,
J. S.
, and
Joshi
,
D. P.
,
2022
, “
Development of Paraffin-Based Shape-Stable Phase Change Material for Thermal Energy Storage
,”
Polym. Sci. Ser. A.
,
64
.
31.
Chinnasamy
,
V.
,
Heo
,
J.
,
Jung
,
S.
,
Lee
,
H.
, and
Cho
,
H.
,
2023
, “
Shape Stabilized Phase Change Materials Based on Different Support Structures for Thermal Energy Storage Applications–A Review
,”
Energy
,
262
, p.
125463
.
32.
Inaba
,
H.
, and
Tu
,
P.
,
1997
, “
Evaluation of Thermophysical Characteristics on Shape-Stabilized Paraffin as a Solid-Liquid Phase Change Material
,”
Heat Mass Transfer/Wärme Stoffübertragung
,
32
(
4
), pp.
307
312
.
33.
Lee
,
C. H.
, and
Choi
,
H. K.
,
1998
, “
Crystalline Morphology in High-Density Polyethylene/Paraffin Blend for Thermal Energy Storage
,”
Polym. Compos.
,
19
(
6
), pp.
704
708
.
34.
Tan
,
S.
,
Yu
,
S.
,
Xu
,
G.
, and
Zhang
,
Y.
,
2013
, “
Preparation and Properties Studies of Paraffin/High Density Polyethylene Composites and Phase-Change Coatings
,”
Prog. Org. Coat.
,
76
(
12
), pp.
1761
1764
.
35.
Chen
,
F.
, and
Wolcott
,
M. P.
,
2014
, “
Miscibility Studies of Paraffin/Polyethylene Blends as Form-Stable Phase Change Materials
,”
Eur. Polym. J.
,
52
(
1
), pp.
44
52
.
36.
Chen
,
F.
, and
Wolcott
,
M.
,
2015
, “
Polyethylene/Paraffin Binary Composites for Phase Change Material Energy Storage in Building: A Morphology, Thermal Properties, and Paraffin Leakage Study
,”
Solar Energy Mater. Solar Cells
,
137
, pp.
79
85
.
37.
Hlangothi
,
S.
,
Krupa
,
I.
,
Djoković
,
V.
, and
Luyt
,
A.
,
2003
, “
Thermal and Mechanical Properties of Cross-Linked and Uncross-Linked Linear Low-Density Polyethylene–Wax Blends
,”
Polym. Degrad. Stab.
,
79
(
1
), pp.
53
59
.
38.
Krupa
,
I.
,
Mikov
,
G.
, and
Luyt
,
A. S.
,
2007
, “
Phase Change Materials Based on Low-Density Polyethylene/Paraffin Wax Blends
,”
Eur. Polym. J.
,
43
(
11
), pp.
4695
4705
.
39.
Hato
,
M. J.
, and
Luyt
,
A. S.
,
2007
, “
Thermal Fractionation and Properties of Different Polyethylene/Wax Blends
,”
J. Appl. Polym. Sci.
,
104
(
4
), pp.
2225
2236
.
40.
Molefi
,
J. A.
,
Luyt
,
A. S.
, and
Krupa
,
I.
,
2010
, “
Comparison of LDPE, LLDPE and HDPE as Matrices for Phase Change Materials Based on a Soft Fischer-Tropsch Paraffin Wax
,”
Thermochimica Acta
,
500
(
1–2
), pp.
88
92
.
41.
Mngomezulu
,
M. E.
,
Luyt
,
A. S.
, and
Krupa
,
I.
,
2010
, “
Structure and Properties of Phase Change Materials Based on HDPE, Soft Fischer-Tropsch Paraffin Wax, and Wood Flour
,”
J. Appl. Polym. Sci.
,
118
(
3
), pp.
1541
1551
.
42.
Shi
,
Y.
,
Hu
,
M.
,
Xing
,
Y.
, and
Li
,
Y.
,
2020
, “
Temperature-Dependent Thermal and Mechanical Properties of Flexible Functional PDMS/paraffin Composites
,”
Mater. Des.
,
185
, p.
108219
.
43.
Hong
,
Y.
, and
Xin-shi
,
G.
,
2000
, “
Preparation of Polyethylene-Paraffin Compound as a Form-Stable Solid-Liquid Phase Change Material
,”
Sol. Energy Mater. Sol. Cells
,
64
(
1
), pp.
37
44
.
44.
Sari
,
A.
,
2004
, “
Form-Stable Paraffin/High Density Polyethylene Composites as Solid-Liquid Phase Change Material for Thermal Energy Storage: Preparation and Thermal Properties
,”
Energy Convers. Manage.
,
45
(
13–14
), pp.
2033
2042
.
45.
Kaygusuz
,
K.
, and
Sari
,
A.
,
2007
, “
High Density Polyethylene/Paraffin Composites as Form-Stable Phase Change Material for Thermal Energy Storage
,”
Energy Sources A: Recov., Util. Environ. Eff.
,
29
(
3
), pp.
261
270
.
46.
Yan
,
Q.
,
Li
,
L.
, and
Shen
,
D.
,
2010
, “
Thermal Properties of Shape-Stabilized Paraffin Used for Wallboard
,”
Int. J. Sustain. Energy
,
29
(
2
), pp.
87
95
.
47.
Zhang
,
Y. P.
,
Lin
,
K. P.
,
Yang
,
R.
,
Di
,
H. F.
, and
Jiang
,
Y.
,
2006
, “
Preparation, Thermal Performance and Application of Shape-Stabilized PCM in Energy Efficient Buildings
,”
Energy Build.
,
38
(
10
), pp.
1262
1269
.
48.
Zhou
,
G.
,
Zhang
,
Y.
,
Lin
,
K.
, and
Xiao
,
W.
,
2008
, “
Thermal Analysis of a Direct-Gain Room With Shape-Stabilized PCM Plates
,”
Renew. Energy
,
33
(
6
), pp.
1228
1236
.
49.
Mu
,
M.
,
Basheer
,
P. A.
,
Sha
,
W.
,
Bai
,
Y.
, and
McNally
,
T.
,
2016
, “
Shape Stabilised Phase Change Materials Based on a High Melt Viscosity HDPE and Paraffin Waxes
,”
Appl. Energy
,
162
, pp.
68
82
.
50.
Cheng
,
W. L.
,
Zhang
,
R. M.
,
Xie
,
K.
,
Liu
,
N.
, and
Wang
,
J.
,
2010
, “
Heat Conduction Enhanced Shape-Stabilized Paraffin/HDPE Composite PCMs by Graphite Addition: Preparation and Thermal Properties
,”
Sol. Energy Mater. Sol. Cells
,
94
(
10
), pp.
1636
1642
.
51.
Cheng
,
W. L.
,
Liu
,
N.
, and
Wu
,
W. F.
,
2012
, “
Studies on Thermal Properties and Thermal Control Effectiveness of a New Shape-Stabilized Phase Change Material With High Thermal Conductivity
,”
Appl. Therm. Eng.
,
36
(
1
), pp.
345
352
.
52.
Cheng
,
W.
,
Xie
,
B.
,
Zhang
,
R.
,
Xu
,
Z.
, and
Xia
,
Y.
,
2015
, “
Effect of Thermal Conductivities of Shape Stabilized PCM on Under-Floor Heating System
,”
Appl. Energy
,
144
, pp.
10
18
.
53.
Sobolčiak
,
P.
,
Abdelrazeq
,
H.
,
Özerkan
,
N. G.
,
Ouederni
,
M.
,
Nógellová
,
Z.
,
AlMaadeed
,
M. A.
,
Karkri
,
M.
, and
Krupa
,
I.
,
2016
, “
Heat Transfer Performance of Paraffin Wax Based Phase Change Materials Applicable in Building Industry
,”
Appl. Therm. Eng.
,
107
, pp.
1313
1323
.
54.
AlMaadeed
,
M. A.
,
Labidi
,
S.
,
Krupa
,
I.
, and
Karkri
,
M.
,
2015
, “
Effect of Expanded Graphite on the Phase Change Materials of High Density Polyethylene/Wax Blends
,”
Thermochim. Acta
,
600
, pp.
35
44
.
55.
Guo
,
X.
,
Zhang
,
S.
, and
Cao
,
J.
,
2018
, “
An Energy-Efficient Composite by Using Expanded Graphite Stabilized Paraffin as Phase Change Material
,”
Compos. A: Appl. Sci. Manuf.
,
107
, pp.
83
93
.
56.
Tang
,
Y.
,
Jia
,
Y.
,
Alva
,
G.
,
Huang
,
X.
, and
Fang
,
G.
,
2016
, “
Synthesis, Characterization and Properties of Palmitic Acid/high Density Polyethylene/graphene Nanoplatelets Composites as Form-Stable Phase Change Materials
,”
Sol. Energy Mater. Sol. Cells
,
155
, pp.
421
429
.
57.
Tang
,
Y.
,
Su
,
D.
,
Huang
,
X.
,
Alva
,
G.
,
Liu
,
L.
, and
Fang
,
G.
,
2016
, “
Synthesis and Thermal Properties of the MA/HDPE Composites With Nano-additives As Form-Stable PCM With Improved Thermal Conductivity
,”
Appl. Energy
,
180
, pp.
116
129
.
58.
Tang
,
Y.
,
Lin
,
Y.
,
Jia
,
Y.
, and
Fang
,
G.
,
2017
, “
Improved Thermal Properties of Stearyl Alcohol/High Density Polyethylene/Expanded Graphite Composite Phase Change Materials for Building Thermal Energy Storage
,”
Energy Build.
,
153
, pp.
41
49
.
59.
Huang
,
X.
,
Alva
,
G.
,
Liu
,
L.
, and
Fang
,
G.
,
2017
, “
Microstructure and Thermal Properties of Cetyl Alcohol/High Density Polyethylene Composite Phase Change Materials With Carbon Fiber as Shape-Stabilized Thermal Storage Materials
,”
Appl. Energy
,
200
, pp.
19
27
.
60.
Qu
,
Y.
,
Wang
,
S.
,
Tian
,
Y.
, and
Zhou
,
D.
,
2019
, “
Comprehensive Evaluation of Paraffin-HDPE Shape Stabilized PCM With Hybrid Carbon Nano-Additives
,”
Appl. Therm. Eng.
,
163
, p.
114404
.
61.
Qu
,
Y.
,
Wang
,
S.
,
Zhou
,
D.
, and
Tian
,
Y.
,
2020
, “
Experimental Study on Thermal Conductivity of Paraffin-Based Shape-Stabilized Phase Change Material With Hybrid Carbon Nano-Additives
,”
Renew. Energy
,
146
, pp.
2637
2645
.
62.
Cai
,
Y.
,
Hu
,
Y.
,
Song
,
L.
,
Lu
,
H.
,
Chen
,
Z.
, and
Fan
,
W.
,
2006
, “
Preparation and Characterizations of HDPE-EVA Alloy/OMT Nanocomposites/Paraffin Compounds as a Shape Stabilized Phase Change Thermal Energy Storage Material
,”
Thermochim. Acta
,
451
(
1–2
), pp.
44
51
.
63.
Chalkia
,
V.
,
Tachos
,
N.
,
Pandis
,
P. K.
,
Giannakas
,
A.
,
Koukou
,
M. K.
,
Vrachopoulos
,
M. G.
,
Coelho
,
L.
,
Ladavos
,
A.
, and
Stathopoulos
,
V. N.
,
2018
, “
Influence of Organic Phase Change Materials on the Physical and Mechanical Properties of HDPE and PP Polymers
,”
RSC Adv.
,
8
(
48
), pp.
27438
27447
.
64.
Krupa
,
I.
,
Nógellová
,
Z.
,
Špitalský
,
Z.
,
Janigová
,
I.
,
Boh
,
B.
,
Sumiga
,
B.
,
Kleinová
,
A.
,
Karkri
,
M.
, and
AlMaadeed
,
M. A.
,
2014
, “
Phase Change Materials Based on High-Density Polyethylene Filled With Microencapsulated Paraffin Wax
,”
Energy Convers. Manage.
,
87
, pp.
400
409
.
65.
Crump
,
S. S.
,
1992
, “
Apparatus and Method for Creating Three-Dimensional Objects, US Patent No. US5121329A
”.
66.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Tiwari
,
R.
,
Dessiatoun
,
S. V.
,
Ohadi
,
M. M.
, and
Pearce
,
J. M.
,
2017
, “
Experimental Characterization of Heat Transfer in an Additively Manufactured Polymer Heat Exchanger
,”
Appl. Therm. Eng.
,
113
, pp.
575
584
.
67.
Bart
,
H.-J.
,
Dreiser
,
C.
, and
Laaber
,
D.
,
2017
, “Polymer Film Heat Exchangers,”
Innovative Heat Exchangers
,
Springer International Publishing
,
Cham
, pp.
1
52
.
68.
Wang
,
X.
,
Yong
,
Z. Z.
,
Li
,
Q. W.
,
Bradford
,
P. D.
,
Liu
,
W.
,
Tucker
,
D. S.
,
Cai
,
W.
,
Wang
,
H.
,
Yuan
,
F. G.
, and
Zhu
,
Y. T.
,
2013
, “
Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites
,”
Mater. Res. Lett.
,
1
(
1
), pp.
19
25
.
69.
Chen
,
H.
,
Ginzburg
,
V. V.
,
Yang
,
J.
,
Yang
,
Y.
,
Liu
,
W.
,
Huang
,
Y.
,
Du
,
L.
, and
Chen
,
B.
,
2016
, “
Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications
,”
Prog. Polym. Sci.
,
59
, pp.
41
85
.
70.
Wang
,
Y.
,
Bailey
,
J.
,
Zhu
,
Y.
,
Zhang
,
Y.
,
Boetcher
,
S. K.
,
Li
,
Y.
, and
Wu
,
C.
,
2022
, “
Application of Carbon Nanotube Prepared From Waste Plastic to Phase Change Materials: The Potential for Battery Thermal Management
,”
Waste Manage.
,
154
, pp.
96
104
.
71.
Freeman
,
T. B.
,
Nabutola
,
K.
,
Spitzer
,
D.
,
Currier
,
P. N.
, and
Boetcher
,
S. K. S.
,
2018
, “
3D-Printed PCM/HDPE Composites for Battery Thermal Management
,”
Proceedings of the 2018 ASME International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15
.
72.
Freeman
,
T. B.
,
Spitzer
,
D.
,
Currier
,
P. N.
,
Rollin
,
V.
, and
Boetcher
,
S. K. S.
,
2019
, “
Phase-Change Materials/HDPE Composite Filament: A First Step Toward Use With 3D Printing for Thermal Management Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p.
054502
.
73.
Freeman
,
T. B.
,
Messenger
,
M. A.
,
Troxler
,
C. J.
,
Nawaz
,
K.
,
Rodriguez
,
R. M.
, and
Boetcher
,
S. K.
,
2021
, “
Fused Filament Fabrication of Novel Phase-Change Material Functional Composites
,”
Addit. Manuf.
,
39
, p.
101839
.
74.
Nawaz
,
K.
,
Freeman
,
T. B.
,
Rodriguez
,
R. M.
, and
Boetcher
,
S. K. S.
,
2021
, “
Moisture Affinity of HDPE/Phase-Change Material Composites for Thermal Energy Storage Applications
,”
RSC Adv.
,
11
(
49
), pp.
30569
30573
.
75.
PureTemp
,
2022
, “
PureTemp PCM 42 Technical Data Sheet
,” http://www.puretemp.com. Accessed December 10.
76.
INEOS Olefins & Polymers, U.
,
2022
, “
T50-500-196 Polyethylene Copolymer Technical Data Sheet
,” INEOS Olefins & Polymers, USA, https://www.ineos.com/businesses/ineos-olefins-polymers-usa/, Accessed December 10.
77.
Standard “
Test Method for Tensile Properties of Plastics
,” .
78.
Test Method for Rubber Property Durometer Hardness
,” .
79.
Soo
,
X. Y. D.
,
Png
,
Z. M.
,
Chua
,
M. H.
,
Yeo
,
J. C. C.
,
Ong
,
P. J.
,
Wang
,
S.
,
Wang
,
X.
, et al.,
2022
, “
A Highly Flexible Form-Stable Silicone-Octadecane PCM Composite for Heat Harvesting
,”
Mater. Today Adv.
,
14
, p.
100227
.
80.
Hutchinson
,
J.
, and
Neale
,
K.
,
1983
, “
Neck Propagation
,”
J. Mech. Phys. Solids
,
31
(
5
), pp.
405
426
.
81.
Bazhenov
,
S. L.
, and
Kechek’yan
,
A. S.
,
2013
, “
Heating of Polymers During Neck Propagation
,”
Polym. Sci. Ser. A
,
55
(
6
), pp.
404
414
.
82.
G’sell
,
C.
, and
Jonas
,
J. J.
,
1979
, “
Determination of the Plastic Behaviour of Solid Polymers at Constant True Strain Rate
,”
J. Mater. Sci.
,
14
(
3
), pp.
583
591
.
83.
Marquez-Lucero
,
A.
,
G’Sell
,
C.
, and
Neale
,
K.
,
1989
, “
Experimental Investigation of Neck Propagation in Polymers
,”
Polymer
,
30
(
4
), pp.
636
642
.
84.
Vincent
,
P.
,
1960
, “
The Necking and Cold-Drawing of Rigid Plastics
,”
Polymer
,
1
, pp.
7
19
.
85.
Ehrenstein
,
G.
,
Engel
,
L.
,
Klingele
,
H.
, and
Schaper
,
H.
,
2011
,
Scanning Electron Microscopy of Plastics Failure, 1st edn
,
Hanser Publishers
,
Munich, Germany
.
86.
Ehid
,
R.
, and
Fleischer
,
A. S.
,
2012
, “
Development and Characterization of Paraffin-Based Shape Stabilized Energy Storage Materials
,”
Energy Convers. Manage.
,
53
(
1
), pp.
84
91
.
87.
Li
,
X.
,
Sanjayan
,
J. G.
, and
Wilson
,
J. L.
,
2014
, “
Fabrication and Stability of Form-Stable Diatomite/Paraffin Phase Change Material Composites
,”
Energy Build.
,
76
, pp.
284
294
.
88.
Kong
,
X.
,
Zhong
,
Y.
,
Rong
,
X.
,
Min
,
C.
, and
Qi
,
C.
,
2016
, “
Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study
,”
Materials
,
9
(
2
), pp.
70
.
You do not currently have access to this content.