Abstract

The influence of correlations on the thermal performance modeling of parabolic trough collectors was analyzed in this work. A versatile model for a parabolic trough collector was developed that allows one- and two-dimensional analysis and enables the use of correlations to calculate thermophysical properties and convection heat transfer coefficients. The model also allows the use of constant values for properties and/or coefficients obtained from the evaluation correlations at a specific temperature. The effect of each correlation was evaluated independently, and the results were compared with a reference case that considered a two-dimensional approach and used all the correlations. For the analyzed cases, the correlation for the absorber emittance has the strongest impact on the collector efficiency, leading to a lower error when used. Based on the results, a one-dimensional model approach considering a correlation for the absorber emittance leads to efficiency errors below 3% for collector lengths of up to 243.6 m. Compared with the reference case, a one-dimensional approach using all correlations for a collector with a length of 500 m, and operating with an inlet temperature of 773 K, can result in errors around 9%. However, using constant values for properties and heat transfer coefficients could lead to errors of up to 50%. Multiple thermal models for parabolic trough collectors proposed in the literature rely on a one-dimensional approach, estimated values for the heat transfer coefficients, and constant thermophysical properties. The errors associated with those approaches are analyzed and quantified in this work as a function of the collector length and operation temperature.

References

1.
International Renewable Energy Agency—IRENA
,
2022
, “Renewable Power Generation Cost in 2021,” International Renewable Energy Agency, July 2022 Report, Abu Dhabi, UAE. ISBN 978-92-9260-452-3.
2.
Martín-Sómer
,
M.
,
Moreno-SanSegundo
,
J.
,
Álvarez-Fernández
,
C.
,
van Grieken
,
R.
, and
Marugán
,
J.
,
2021
, “
High-Performance Low-Cost Solar Collectors for Water Treatment Fabricated With Recycled Materials, Open-Source Hardware and 3d-Printing Technologies
,”
Sci. Total Environ.
,
784
, p.
147119
.
3.
Baseer
,
M. A.
,
Praveen
,
R. P.
,
Zubair
,
M.
,
Khalil
,
A. G. A.
, and
Saduni
,
I. A.
,
2020
, “
Performance and Optimization of Commercial Solar PV and PTC Plants
,”
Int. J. Recent Technol. Eng.
,
8
(
5
), pp.
1703
1714
.
4.
Glatzmaier
,
G. C.
,
2010
,
"Measurement of Hydrogen Purge Rates in Parabolic Trough Receiver Tubes," National Renewable Energy Laboratory (NREL), Golden, CO, Report No. NREL/CP-5500-43966
.
5.
Wu
,
Z.
,
Yan
,
S.
,
Wang
,
Z.
,
Ming
,
T.
,
Zhao
,
X.
,
Ma
,
R.
, and
Wu
,
Y.
,
2020
, “
The Effect of Dust Accumulation on the Cleanliness Factor of a Parabolic Trough Solar Concentrator
,”
Renewable Energy
,
152
(
2
), pp.
529
539
.
6.
Fuqiang
,
W.
,
Ziming
,
C.
,
Jianyu
,
T.
,
Yuan
,
Y.
,
Yong
,
S.
, and
Linhua
,
L.
,
2017
, “
Progress in Concentrated Solar Power Technology With Parabolic Trough Collector System: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
79
, pp.
1314
1328
.
7.
Walczak
,
M.
,
Pineda
,
F.
,
Fernández
,
A. G.
,
Mata-Torres
,
C.
, and
Escobar
,
R. A.
,
2018
, “
Materials Corrosion for Thermal Energy Storage Systems in Concentrated Solar Power Plants
,”
Renewable Sustainable Energy Rev.
,
86
, pp.
22
44
.
8.
do Carmo Zidan
,
D.
,
Brasil Maia
,
C.
, and
Reza Safaei
,
M.
,
2022
, “
Performance Evaluation of Various Nanofluids for Parabolic Trough Collectors
,”
Sust. Energy Technol. Assess.
,
50
, p.
101865
.
9.
Shajan
,
S.
, and
Baiju
,
V.
,
2022
, “
Designing a Novel Small-Scale Parabolic Trough Solar Thermal Collector With Secondary Reflector for Uniform Heat Flux Distribution
,”
Appl. Therm. Eng.
,
213
, p.
118660
.
10.
Zhao
,
K.
,
Jin
,
H.
,
Gai
,
Z.
, and
Hong
,
H.
,
2022
, “
A Thermal Efficiency-Enhancing Strategy of Parabolic Trough Collector Systems by Cascadingly Applying Multiple Solar Selective-Absorbing Coatings
,”
Appl. Energy
,
309
, p.
118508
.
11.
Osorio
,
J. D.
,
Rivera-Alvarez
,
A.
,
Girurugwiro
,
P.
,
Yang
,
S.
,
Hovsapian
,
R.
, and
Ordonez
,
J. C.
,
2017
, “
Integration of Transparent Insulation Materials Into Solar Collector Devices
,”
Sol. Energy
,
147
, pp.
8
21
.
12.
Wang
,
Q.
,
Yang
,
H.
,
Hu
,
M.
,
Huang
,
X.
,
Li
,
J.
, and
Pei
,
G.
,
2018
, “
Preliminary Performance Study of a High-Temperature Parabolic Trough Solar Evacuated Receiver With an Inner Transparent Radiation Shield
,”
Sol. Energy
,
173
, pp.
640
650
.
13.
Osorio
,
J. D.
, and
Rivera-Alvarez
,
A.
,
2019
, “
Performance Analysis of Parabolic Trough Collectors With Double Glass Envelope
,”
Renewable Energy
,
130
, pp.
1092
1107
.
14.
Güven
,
H. M.
, and
Bannerot
,
R. B.
,
1986
, “
Derivation of Universal Error Parameters for Comprehensive Optical Analysis of Parabolic Troughs
,”
ASME J. Sol. Energy Eng.
,
108
(
4
), pp.
275
281
.
15.
Osorio
,
J. D.
, and
Rivera-Alvarez
,
A.
,
2022
, “
Influence of the Concentration Ratio on the Thermal and Economic Performance of Parabolic Trough Collectors
,”
Renewable Energy
,
181
, pp.
786
802
.
16.
Zou
,
B.
,
Yao
,
Y.
,
Jiang
,
Y.
, and
Yang
,
H.
,
2018
, “
A New Algorithm for Obtaining the Critical Tube Diameter and Intercept Factor of Parabolic Trough Solar Collectors
,”
Energy
,
150
, pp.
451
467
.
17.
Forristall
,
R.
,
2003
,
“Heat Transfer Analysis and Modelling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver,” National Renewable Energy Laboratory (NREL), Golden, CO, Report No. NREL/TP-550-34169
.
18.
Malan
,
A.
, and
Kumar
,
R.
,
2021
, “
A Comprehensive Review on Optical Analysis of Parabolic Trough Solar Collector
,”
Sust. Energy Technol. Assess.
,
46
, p.
101305
.
19.
Yılmaz
,
I. H.
, and
Mwesigye
,
A.
,
2018
, “
Modeling, Simulation and Performance Analysis of Parabolic Trough Solar Collectors: A Comprehensive Review
,”
Appl. Energy
,
225
, pp.
135
174
.
20.
Hachicha
,
A. A.
,
Yousef
,
B. A. A.
,
Said
,
Z.
, and
Rodríguez
,
I.
,
2018
, “
A Review Study on the Modeling of High-Temperature Solar Thermal Collector Systems
,”
Renewable Sustainable Energy Rev.
,
112
, pp.
280
298
.
21.
Xu
,
L.
,
Sun
,
F.
,
Ma
,
L.
,
Li
,
X.
,
Lei
,
D.
,
Yuan
,
G.
,
Zhu
,
H.
,
Zhang
,
Q.
,
Xu
,
W.
, and
Wang
,
Z.
,
2019
, “
Analysis of Optical and Thermal Factors’ Effects on the Transient Performance of Parabolic Trough Solar Collectors
,”
Sol. Energy
,
179
, pp.
195
209
.
22.
Babikir
,
M. H.
,
Njomo
,
D.
,
Barka
,
M.
,
Chara-Dackou
,
V. S.
,
Kondji
,
Y. S.
, and
Khayal
,
M. Y.
,
2021
, “
Thermal Modeling of a Parabolic Trough Collector in a Quasi-Steady State Regime
,”
J. Renewable Sustainable Energy
,
13
, p.
013703
.
23.
Behar
,
O.
,
Khellaf
,
A.
, and
Mohammedi
,
K.
,
2021
, “
A Novel Parabolic Trough Solar Collector Model—Validation With Experimental Data and Comparison to Engineering Equation Solver (EES)
,”
Energy Convers. Manage.
,
106
, pp.
268
281
.
24.
Nascimento
,
F. I.
,
Zavaleta-Aguilar
,
E. W.
, and
Simões-Moreira
,
J. R.
,
2021
, “
Algorithm for Sizing Parabolic-Trough Solar Collectors
,”
Therm. Sci. Eng. Prog.
,
24
, p.
100932
.
25.
Hachicha
,
A. A.
,
Rodríguez
,
I.
,
Capdevila
,
R.
, and
Oliva
,
A.
,
2013
, “
Heat Transfer Analysis and Numerical Simulation of a Parabolic Trough Solar Collector
,”
Appl. Energy
,
111
, pp.
581
592
.
26.
Chaabane
,
M.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2020
, “
Thermal Performance Evaluation and Enhancement of a Parabolic Trough Collector
,”
J. Renewable Sustainable Energy
,
12
(
4
), p.
043702
.
27.
Vahedi
,
B.
,
Golab
,
E.
,
Nasiri Sadr
,
A.
, and
Vafai
,
K.
,
2022
, “
Thermal, Thermodynamic and Exergoeconomic Investigation of a Parabolic Trough Collector Utilizing Nanofluids
,”
Appl. Therm. Eng.
,
206
, p.
118117
.
28.
Ghodbane
,
M.
,
Boumeddane
,
B.
,
Khechekhouche
,
A.
, and
Largot
,
S.
,
2022
, “
Study of the Effect of the Position and Metal of the Receiver Tube on the Performance of a Parabolic Trough Solar Collector
,”
Mater. Today: Proc.
,
51
(
7
), pp.
2144
2151
.
29.
Knysh
,
L.
,
2021
, “
Comprehensive Mathematical Model and Efficient Numerical Analysis of the Design Parameters of the Parabolic Trough Receiver
,”
Int. J. Therm. Sci.
,
162
, p.
106777
.
30.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
,
“Test Results: SGES LS-2 Solar Collector,” Sandia National Laboratory (SNL), Albuquerque, NM, Report No. SAND-94-1884
.
31.
Kalogirou
,
S.
,
1996
, “
Parabolic Trough Collector System for Low Temperature Steam Generation: Design and Performance Characteristics
,”
Appl. Energy
,
55
(
1
), pp.
1
19
.
32.
Badescu
,
V.
,
2008
, “
Theoretical Derivation of Heliostat Tracking Errors Distribution
,”
Sol. Energy
,
82
(
12
), pp.
1192
1197
.
33.
Chafie
,
M.
,
Aissa
,
M. F. B.
, and
Guizani
,
A.
,
2018
, “
Energetic end Exergetic Performance of a Parabolic Trough Collector Receiver: An Experimental Study
,”
J. Clean. Prod.
,
171
, pp.
285
296
.
34.
Fan
,
M.
,
Liang
,
H.
,
You
,
S.
,
Zhang
,
H.
,
Zheng
,
W.
, and
Xia
,
J.
,
2018
, “
Heat Transfer Analysis of a New Volumetric Based Receiver for Parabolic Trough Solar Collector
,”
Energy
,
142
, pp.
920
931
.
35.
Osorio
,
J. D.
,
Rivera-Alvarez
,
A.
, and
Ordonez
,
J. C.
,
2019
, “
Effect of the Concentration Ratio on Energetic and Exergetic Performance of Concentrating Solar Collectors With Integrated Transparent Insulation Materials
,”
Sust. Energy Technol. Assess.
,
32
, pp.
58
70
.
36.
Davis
,
J. R.
,
2000
,
Alloy Digest, Sourcebook, Stainless Steels
,
ASM International
,
Materials Park, OH
.
37.
Gnielinski
,
V.
,
1975
, “
New Equations for Heat and Mass Transfer in the Turbulent Flow in Pipes and Channels
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
363
.
38.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F.
, and
DeWitt
,
D.
,
2018
,
Fundamentals of Heat and Mass Transfer
, 8th ed.,
John Wiley and Sons
,
New York
.
39.
DOW Chemical Company
,
2001
,
“SYLTHERM™ 800 Stabilized Heat Transfer Fluid. Product Information" in Osorio, J. D., and Rivera-Alvarez, A., 2022, “Influence of the Concentration Ratio on the Thermal and Economic Performance of Parabolic Trough Collectors,” Renewable Energy, 181, pp. 786–802
.
40.
Ratzel
,
A.
,
Hickox
,
C.
, and
Gartling
,
D.
,
1979
, “
Techniques for Reducing Thermal Conduction and Natural Convection Heat Losses in Annular Receiver Geometries
,”
ASME J. Heat Mass Trans.
,
101
(
1
), pp.
108
113
.
41.
Medard
,
L.
, and
Marshall
,
N.
,
1976
,
Gas Encylopedia
, 1st ed.,
Elsevier Science
,
New York
, p.
1164
.
42.
Žukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Trans.
,
8
, pp.
93
160
.
43.
García-Valladares
,
O.
, and
Velázquez
,
N.
,
2009
, “
Numerical Simulation of Parabolic Trough Solar Collector: Improvement Using Counter Flow Concentric Circular Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
597
609
.
44.
Vasquez-Padilla
,
R.
,
Demirkaya
,
G.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Rahman
,
M. M.
,
2011
, “
Heat Transfer Analysis of Parabolic Trough Solar Receiver
,”
Appl. Energy
,
88
(
12
), pp.
5097
5110
.
45.
Barbero
,
R.
,
Rovira
,
A.
,
Montes
,
M. J.
, and
Martínez Val
,
J. M.
,
2016
, “
A New Approach for the Prediction of Thermal Efficiency in Solar Receivers
,”
Energy Convers. Manage.
,
123
, pp.
498
511
.
46.
Goel
,
A.
,
Manik
,
G.
, and
Verma
,
O. P.
,
2022
, “
Designing a Robust Analytical Model of a Parabolic Trough Solar Collector Through In-Depth Analysis of Convective Heat Transfers
,”
Arab. J. Sci. Eng.
,
47
(
5
), pp.
6535
6557
.
47.
Liang
,
H.
,
You
,
S.
, and
Zhang
,
H.
,
2015
, “
Comparison of Different Heat Transfer Models for Parabolic Trough Solar Collectors
,”
Appl. Energy
,
148
, pp.
105
114
.
48.
Cheng
,
Z. D.
,
He
,
Y. L.
, and
Qiu
,
Y.
,
2015
, “
A Detailed Nonuniform Thermal Model of a Parabolic Trough Solar Receiver With Two Halves and Two Inactive Ends
,”
Renewable Energy
,
74
, pp.
139
147
.
49.
El Kouche
,
A.
, and
Ortegón Gallego
,
F.
,
2022
, “
Modeling and Numerical Simulation of a Parabolic Trough Collector Using an HTF With Temperature Dependent Physical Properties
,”
Math. Comput. Simul.
,
192
, pp.
430
451
.
50.
Kalogirou
,
S. A.
,
2012
, “
A Detailed Thermal Model of a Parabolic Trough Collector Receiver
,”
Energy
,
48
(
1
), pp.
298
306
.
51.
Huang
,
W.
,
Xu
,
Q.
, and
Hu
,
P.
,
2016
, “
Coupling 2D Thermal and 3D Optical Model for Performance Prediction of a Parabolic Trough Solar Collector
,”
Sol. Energy
,
139
, pp.
365
380
.
52.
Yılmaz
,
I. H.
, and
Söylemez
,
M. S.
,
2014
, “
Thermo-Mathematical Modeling of Parabolic Trough Collector
,”
Energy Convers. Manage.
,
88
, pp.
768
784
.
53.
Wirz
,
M.
,
Roesle
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Three-Dimensional Optical and Thermal Numerical Model of Solar Tubular Receivers in Parabolic Trough Concentrators
,”
ASME J. Sol. Energy Eng.
,
134
(
4
), p.
041012
.
54.
Wang
,
P.
,
Liu
,
D. Y.
,
Xu
,
C.
,
Zhou
,
L.
, and
Xia
,
L.
,
2016
, “
Conjugate Heat Transfer Modeling and Asymmetric Characteristic Analysis of the Heat Collecting Element for a Parabolic Trough Collector
,”
Int. J. Therm. Sci.
,
101
, pp.
68
84
.
55.
Abraham
,
J. P.
,
Sparrow
,
E. M.
, and
Minkowycz
,
W. J.
,
2011
, “
Internal-Flow Nusselt Numbers for the Low-Reynolds-Number end of the Laminar-to-Turbulent Transition Regime
,”
Int. J. Heat. Mass Transfer
,
54
(
1–3
), pp.
584
588
.
56.
Sandall
,
O. C.
,
Hanna
,
O. T.
, and
Mazet
,
P. R.
,
1980
, “
A New Theoretical Formula for Turbulent Heat and Mass Transfer With Gases or Liquids in Tube Flow
,”
Can. J. Chem. Eng.
,
58
(
4
), pp.
443
447
.
57.
Meyer
,
J. P.
,
Everts
,
M.
,
Coetzee
,
N.
,
Grote
,
K.
, and
Steyn
,
M.
,
2019
, “
Heat Transfer Coefficients of Laminar, Transitional, Quasi-Turbulent and Turbulent Flow in Circular Tubes
,”
Int. Commun. Heat Mass Transfer
,
105
, pp.
84
106
.
58.
Panda
,
M.
,
Kumar
,
D.
,
Gharat
,
P. V.
,
Patil
,
R. G.
,
Dalvi
,
V. H.
,
Mathpati
,
C. S.
,
Gaval
,
V. R.
,
Deshmukh
,
S. P.
,
Panse
,
V. V.
, and
Joshi
,
J. B.
,
2022
, “
Cost Effective Non-Evacuated Receiver for Line-Concentrating Solar Collectors Characterized by Experimentally Validated Computational Fluid Dynamics Model
,”
Can. J. Chem. Eng.
,
100
(
9
), pp.
2259
2278
.
59.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
, 4th ed.,
John Wiley & Sons
,
New York
.
60.
Raithby
,
G. D.
,
Hollands
,
K. G. T.
,
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer Fundamentals
, 3rd ed.,
McGraw-Hill
,
New York
.
61.
Churchill
,
S.
, and
Bernstein
,
M. A.
,
1977
, “
A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
300
306
.
62.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
1329
.
You do not currently have access to this content.