Abstract

In recent years, a good number of research works have been conducted to elucidate the different aspects of photovoltaic thermal (PV/T) technology. However, in order to take a technology to its maturity level, it is important to explore its internal physics and identify the factors that control system performance. With this view, in the present research, thermal and heat transfer characterization, and pressure drop phenomena inside a parallel-plate PV/T collector have been examined numerically to portray the thermo-fluid physiognomy of the system. A three-dimensional mathematical model of the PV/T system has been developed, and the model is used to build a computer simulation of the system in COMSOL Multiphysics® software. Hence, the simulation model has been validated by outdoor experimental results and was found to be in good agreement. Thus, the simulation program is employed to produce temperature distribution and heat flow plots throughout the flow channel, wherein results have been evaluated for two different channel materials, e.g., aluminum and copper. Results show that heat flowrate through both aluminum and copper channels is virtually the same. On the other hand, pressure drop, thereby pumping power required to maintain flow, is greater for an aluminum channel. The developed heat transfer simulation model can be extended for other PV modules with diverse designs and materials of the heat exchanger.

References

1.
Nahar
,
A.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2017
, “
A Three-Dimensional Comprehensive Numerical Investigation of Different Operating Parameters on the Performance of a Photovoltaic Thermal System With Pancake Collector
,”
ASME J. Sol. Energy Eng.
,
139
(
3
), p.
031009
.
2.
Nahar
,
A.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2017a
, “
Numerical and Experimental Investigation on the Performance of a Photovoltaic Thermal Collector With Parallel Plate Flow Channel Under Different Operating Conditions in Malaysia
,”
Sol. Energy
,
144
, pp.
517
528
. S0038092X17300609
3.
Redpath
,
D. A.
,
Singh
,
H.
,
Tierney
,
C.
, and
Dalzell
,
P.
,
2012
, “
An Experimental Comparison of Two Solar Photovoltaic-Thermal (PVT) Energy Conversion Systems for Production of Heat and Power
,”
Energy and Power
,
2
(
4
), pp.
46
50
.
4.
Prakash
,
J.
,
1994
, “
Transient Analysis of a Photovoltaic-Thermal Solar Collector for co-Generation of Electricity and Hot Air/Water
,”
Energy Convers. Manage.
,
35
(
11
), pp.
967
972
.
5.
Huang
,
B. J.
,
Lin
,
T. H.
,
Hung
,
W. C.
, and
Sun
,
F. S.
,
2001
, “
Performance Evaluation of Solar Photovoltaic/Thermal System
,”
Sol. Energy
,
70
(
5
), pp.
443
448
.
6.
Sandnes
,
B.
, and
Rekstad
,
J.
,
2002
, “
A Photovoltaic/Thermal (PV/T) Collector with a Polymer Absorber Plate. Experimental Study and Analytical Model
,”
Sol. Energy
,
72
(
1
), pp.
63
73
.
7.
Zondag
,
H. A.
,
de Vries
,
D. D.
,
Van Helden
,
W. G. J.
,
van Zolingen
,
R. C.
, and
van Steenhoven
,
A. A.
,
2002
, “
The Thermal and Electrical Yield of a PV-Thermal Collector
,”
Sol. Energy
,
72
(
2
), pp.
113
128
.
8.
Chow
,
T.
,
2003
, “
Performance Analysis of Photovoltaic-Thermal Collector by Explicit Dynamic Model
,”
Sol. Energy
,
75
(
2
), pp.
143
152
.
9.
Tiwari
,
A.
, and
Sodha
,
M.
,
2006
, “
Performance Evaluation of Solar PV/T System: an Experimental Validation
,”
Sol. Energy
,
80
(
7
), pp.
751
759
.
10.
Tiwari
,
A.
, and
Sodha
,
M.
,
2006a
, “
Performance Evaluation of Hybrid PV/Thermal Water/air Heating System: a Parametric Study
,”
Renewable Energy
,
31
(
15
), pp.
2460
2474
.
11.
Tiwari
,
A.
, and
Sodha
,
M.
,
2007
, “
Parametric Study of Various Configurations of Hybrid PV/Thermal air Collector: Experimental Validation of Theoretical Model
,”
Sol. Energy Mater. Sol. Cells
,
91
(
1
), pp.
17
28
.
12.
Dubey
,
S.
, and
Tiwari
,
G. N.
,
2008
, “
Thermal Modeling of a Combined System of Photovoltaic Thermal (PV/T) Solar Water Heater
,”
Sol. Energy
,
82
(
7
), pp.
602
612
.
13.
Joshi
,
A. S.
,
Tiwari
,
A.
,
Tiwari
,
G. N.
,
Dincer
,
I.
, and
Reddy
,
B. V.
,
2009
, “
Performance Evaluation of a Hybrid Photovoltaic Thermal (PV/T) (Glass-to-Glass) System
,”
Int. J. Therm. Sci.
,
48
(
1
), pp.
154
164
.
14.
Santbergen
,
R.
,
Rindt
,
C. C. M.
,
Zondag
,
H. A.
, and
Van Zolingen
,
R. C.
,
2010
, “
Detailed Analysis of the Energy Yield of Systems With Covered Sheet-and-Tube PVT Collectors
,”
Sol. Energy
,
84
(
5
), pp.
867
878
.
15.
Teo
,
H. G.
,
Lee
,
P. S.
, and
Hawlader
,
M. N. A.
,
2012
, “
An Active Cooling System for Photovoltaic Modules
,”
Appl. Energy
,
90
(
1
), pp.
309
315
.
16.
Siddiqui
,
M. U.
,
Arif
,
A. F.
,
Kelley
,
L.
, and
Dubowsky
,
S.
,
2012
, “
Three-Dimensional Thermal Modeling of a Photovoltaic Module Under Varying Conditions
,”
Sol. Energy
,
86
(
9
), pp.
2620
2631
.
17.
Aste
,
N.
,
Leonforte
,
F.
, and
Del Pero
,
C.
,
2015
, “
Design, Modeling and Performance Monitoring of a Photovoltaic–Thermal (PVT) Water Collector
,”
Sol. Energy
,
112
, pp.
85
99
.
18.
Khelifa
,
A.
,
Touafek
,
K.
,
Moussa
,
H. B.
,
Tabet
,
I.
, and
Haloui
,
H.
,
2015
, “
Analysis of a Hybrid Solar Collector Photovoltaic Thermal (PVT)
,”
Energy Procedia
,
74
, pp.
835
843
.
19.
Rejeb
,
O.
,
Dhaou
,
H.
, and
Jemni
,
A.
,
2015
, “
A Numerical Investigation of a Photovoltaic Thermal (PV/T) Collector
,”
Renewable Energy
,
77
, pp.
43
50
.
20.
Guarracino
,
I.
,
Mellor
,
A.
,
Ekins-Daukes
,
N. J.
, and
Markides
,
C. N.
,
2016
, “
Dynamic Coupled Thermal-and-Electrical Modelling of Sheet-and-Tube Hybrid Photovoltaic/Thermal (PVT) Collectors
,”
Appl. Therm. Eng.
,
101
, pp.
778
795
.
21.
Lämmle
,
M.
,
Kroyer
,
T.
,
Fortuin
,
S.
,
Wiese
,
M.
, and
Hermann
,
M.
,
2016
, “
Development and Modelling of Highly-Efficient PVT Collectors With Low-Emissivity Coatings
,”
Sol. Energy
,
130
, pp.
161
173
.
22.
Lämmle
,
M.
,
Oliva
,
A.
,
Hermann
,
M.
,
Kramer
,
K.
, and
Kramer
,
W.
,
2017
, “
PVT Collector Technologies in Solar Thermal Systems: A Systematic Assessment of Electrical and Thermal Yields With the Novel Characteristic Temperature Approach
,”
Sol. Energy
,
155
, pp.
867
879
.
23.
Sakellariou
,
E.
, and
Axaopoulos
,
P.
,
2018
, “
An Experimentally Validated, Transient Model for Sheet and Tube PVT Collector
,”
Sol. Energy
,
174
, pp.
709
718
.
24.
Al-Waeli
,
A. H.
,
Chaichan
,
M. T.
,
Sopian
,
K.
,
Kazem
,
H. A.
,
Mahood
,
H. B.
, and
Khadom
,
A. A.
,
2019
, “
Modeling and Experimental Validation of a PVT System Using Nanofluid Coolant and Nano-PCM
,”
Sol. Energy
,
177
, pp.
178
191
.
25.
Maadi
,
S. R.
,
Khatibi
,
M.
,
Ebrahimnia-Bajestan
,
E.
, and
Wood
,
D.
,
2019
, “
Coupled Thermaloptical Numerical Modeling of PV/T Module—Combining CFD Approach and Twoband Radiation DO Model
,”
Energy Convers. Manage.
,
198
, pp.
1
14
.
26.
Shen
,
C.
,
Liu
,
F.
,
Qiu
,
S.
,
Liu
,
X.
,
Yao
,
F.
, and
Zhang
,
Y.
,
2021
, “
Numerical Study on the Thermal Performance of Photovoltaic Thermal (PV/T) Collector with Different Parallel Cooling Channels
,”
Sustainable Energy Technol. Assess.
,
45
, p.
101101
.
27.
Suresh
,
V.
,
Iqbal
,
S. M.
,
Reddy
,
K. S.
, and
Pesala
,
B.
,
2021
, “
3-D Numerical Modelling and Experimental Investigation of Coupled Photovoltaic Thermal and Flat Plate Collector
,”
Sol. Energy
,
224
, pp.
195
209
.
28.
El-Hamid
,
A.
,
Wei
,
G.
,
Sherin
,
M.
,
Cui
,
L.
, and
Du
,
X.
,
2021
, “
Comparative Study of Different Photovoltaic/Thermal Hybrid Configurations From Energetic and Exergetic Points of View: A Numerical Analysis
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061006
.
29.
Sridharan
,
M.
,
Jayaprakash
,
G.
,
Chandrasekar
,
M.
,
Vigneshwar
,
P.
,
Paramaguru
,
S.
, and
Amarnath
,
K.
,
2018
, “
Prediction of Solar Photovoltaic/Thermal Collector Power Output Using Fuzzy Logic
,”
ASME J. Sol. Energy Eng.
,
140
(
6
), p.
061013
.
30.
Shahsavar
,
A.
,
Bagherzadeh
,
S. A.
, and
Afrand
,
M.
,
2021
, “
Application of Artificial Intelligence Techniques in Prediction of Energetic Performance of a Hybrid System Consisting of an Earth-Air Heat Exchanger and a Building-Integrated Photovoltaic/Thermal System
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
051002
.
31.
Gupta
,
A.
,
Agrawal
,
S.
, and
Pal
,
Y.
,
2020
, “
Performance Evaluation of Hybrid Photovoltaic Thermal Thermoelectric Collector Using Grasshopper Optimization Algorithm With Simulated Annealing
,”
ASME J. Sol. Energy Eng.
,
142
(
6
), p.
061004
.
32.
Sobhnamayan
,
F.
,
Sarhaddi
,
F.
,
Alavi
,
M. A.
,
Farahat
,
S.
, and
Yazdanpanahi
,
J.
,
2014
, “
Optimization of a Solar Photovoltaic Thermal (PV/T) Water Collector Based on Exergy a Concept
,”
Renewable Energy
,
68
, pp.
356
365
.
You do not currently have access to this content.