This paper focuses on the thermal and energetic behavior of a building located in the Brazilian Amazon Region, a region climatically characterized by elevated temperatures and high humidity levels, where achieving adequate thermal comfort demands a high-energy consumption due to the use of air-conditioning systems. Therefore, different energy conservation measures (ECMs) need to be evaluated to reduce the thermal load for cooling. The use of a thermal insulation material on the west wall and on the roof, and a photovoltaic (PV) system integrated as an architectural element and adapted to the roof of the building are considered. The building is simulated with the software energyplus, with its thermal behavior and energy consumption analyzed for an entire year and for a chosen design day, defined with data measured by a weather station installed close to the building. According to the evaluations carried out, it is determined that the ECMs have a direct and major influence on the reduction of the thermal load for cooling, on the reduction of the effects caused by radiation with the shading on the eaves, and the reduction of the transmittance on the surfaces that were modified in the study. In terms of energy consumption and economic feasibility, the ECMs reach an annual energy saving percentage of 74% for the building chosen as the case study, and the solutions adopted provide the return of the financial investment, proving suitable for energy saving and economically viable for regions with similar climatic characteristics.

References

1.
OECD/IEA,
2013
, “Transition to Sustainable Buildings—Strategies and Opportunities to 2050,” International Energy Agency, Paris, France, accessed Feb. 21, 2018, http://www.iea.org/etp/buildings
2.
Atam
,
E.
,
2017
, “
Current Software Barriers to Advanced Model-Based Control Design for Energy-Efficient Buildings
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
1031
1040
.
3.
Boyano
,
A.
,
Hernandez
,
P.
, and
Wolf
,
O.
,
2013
, “
Energy Demands and Potential Savings in European Office Buildings: Case Studies Based on EnergyPlus Simulations
,”
Energy Build.
,
65
, pp.
19
28
.
4.
Fumo
,
N.
,
2014
, “
A Review on the Basics of Building Energy Estimation
,”
Renewable Sustainable Energy Rev.
,
31
, pp.
53
60
.
5.
Fridley, D. G., Zheng, N., and Zhou, N.,
2008
, “Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings,” Lawrence Berkeley National Laboratory, Berkeley, CA, Report No.
LBNL-248E
.
6.
Lopes
,
A. C. P.
,
Oliveira Filho
,
D.
,
Altoe
,
L.
,
Carlo
,
J. C.
, and
Lima
,
B. B.
,
2016
, “
Energy Efficiency Labeling Program for Buildings in Brazil Compared to the United States' and Portugal's
,”
Renewable Sustainable Energy Rev.
,
66
, pp.
207
219
.
7.
Tae
,
Y.
,
Kim
,
J.
,
Park
,
H.
, and
Shin
,
B.
,
2014
, “
Building Energy Performance Evaluation of Building Integrated Photovoltaic (BIPV) Window With Semi-Transparent Solar Cells
,”
Appl. Energy
,
129
, pp.
217
227
.
8.
Kapsalis
,
V.
, and
Karamanis
,
D.
,
2015
, “
On the Effect of Roof Added Photovoltaics on Building's Energy Demand
,”
Energy Build.
,
108
, pp.
195
204
.
9.
Boostani
,
H.
, and
Mirzapour
,
E.
,
2015
, “
Impact of External Walls Insulation Location and Distribution on Energy Consumption in Buildings: A Case Study of Northern Cyprus
,”
Eur. Online J. Nat. Soc. Sci.
,
4
(4), pp.
737
741
.
10.
Kaynakli
,
O.
,
2012
, “
A Review of the Economical and Optimum Thermal Insulation Thickness for Building Applications
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
415
425
.
11.
Yu
,
S.
,
Cui
,
Y.
,
Xu
,
X.
, and
Feng
,
G.
,
2015
, “
Impact of Civil Envelope on Energy Consumption Based on EnergyPlus
,”
Procedia Eng.
,
121
, pp.
1528
1534
.
12.
Dylewski
,
R.
, and
Adamczyk
,
J.
,
2011
, “
Economic and Environmental Benefits of Thermal Insulation of Building External Walls
,”
Build. Environ.
,
46
(
12
), pp.
2615
2623
.
13.
Fertelli
,
A.
,
2013
, “
Determination of Optimum Insulation Thickness for Different Building Walls in Turkey
,”
Trans. Famena
,
37
(2), pp.
103
113
.
14.
Aktacir
,
M. A.
,
Büyükalaca
,
O.
, and
Yilmaz
,
T.
,
2010
, “
A Case Study for Influence of Building Thermal Insulation on Cooling Load and Air-Conditioning System in the Hot and Humid Regions
,”
Appl. Energy
,
87
(
2
), pp.
599
607
.
15.
Ban-Weiss
,
G.
,
Wray
,
C.
,
Delp
,
W.
,
Ly
,
P.
,
Akbari
,
H.
, and
Levinson
,
R.
,
2013
, “
Electricity Production and Cooling Energy Savings From Installation of a Building-Integrated Photovoltaic Roof on an Office Building
,”
Energy Build.
,
56
, pp.
210
220
.
16.
Yang
,
T.
, and
Athienitis
,
A. K.
,
2014
, “
A Study of Design Options for a Building Integrated Photovoltaic/Thermal (BIPV/T) System With Glazed Air Collector and Multiple Inlets
,”
Sol. Energy
,
104
, pp.
82
92
.
17.
Dominguez
,
A.
,
Kleissl
,
J.
, and
Luvall
,
J. C.
,
2011
, “
Effects of Solar Photovoltaic Panels on Roof Heat Transfer
,”
Sol. Energy
,
85
(
9
), pp.
2244
2255
.
18.
Kapsalis
,
V. C.
,
Vardoulakis
,
E.
, and
Karamanis
,
D.
,
2012
, “
Simulation of the Cooling Effect of the Roof Added Photovoltaics
,”
Adv. Build. Energy Res.
,
8
(
1
), pp.
41
54
.
19.
Shan
,
F.
,
Tang
,
F.
,
Cao
,
L.
, and
Fang
,
G.
,
2014
, “
Comparative Simulation Analyses on Dynamic Performances of Photovoltaic-Thermal Solar Collectors With Different Configurations
,”
Energy Convers. Manage.
,
87
, pp.
778
786
.
20.
Scherba
,
A.
,
Sailor
,
D. J.
,
Rosenstiel
,
T. N.
, and
Wamser
,
C. C.
,
2011
, “
Modeling Impacts of Roof Reflectivity, Integrated Photovoltaic Panels and Green Roof Systems on Sensible Heat Flux Into the Urban Environment
,”
Build Environ.
,
46
(
12
), pp.
2542
2551
.
21.
James
,
P. A. B.
,
Jentsch
,
M. F.
, and
Bahaj
,
A. S.
,
2009
, “
Quantifying the Added Value of BiPV as a Shading Solution in Atria
,”
Sol. Energy
,
83
(
2
), pp.
220
231
.
22.
ANEEL,
2012
, “Resolução Normativa No 482, de 17 de abril de 2012,” Agência Nacional de Energia Elétrica, Brasília, Brazil, accessed Feb. 21, 2018, http://www2.aneel.gov.br/cedoc/pubren2012482.pdf
23.
ANEEL,
2015
, “Resolução Normativa No 687, de 24 de Novembro de 2015,” Agência Nacional de Energia Elétrica, Brasília, Brazil, accessed Feb. 21, 2018, http://www2.aneel.gov.br/cedoc/pubren2015687.pdf
24.
Macedo
,
W. N.
,
Pinto
,
G. F.
,
Barros
,
G. M. A.
,
Pinho
,
J. T.
, and
Zilles
,
R.
,
2008
, “
The First Grid-Connected PV Application in the Amazon Region
,”
23rd European Photovoltaic Solar Energy Conference
(
EU PVSEC
), Valencia, Spain, Sept. 1–5, pp.
3468
3471
.
25.
Macêdo
,
W. N.
,
André
,
M.
,
Galhardo
,
B.
,
Renan
,
A.
, and
Manito
,
A.
,
2010
, “Avaliação de Desempenho Operacional do Primeiro Sistema Fotovoltaico Conectado à Rede Elétrica e Integrado à Edificação da Amazônia Brasileira,” IV ISES_CLA. XVII SPES, pp. 1–5.
26.
Longo
,
F.
,
França
,
R.
,
Monteiro
,
M.
, and
Blasques
,
L.
,
2013
, “Integrated Design Approach to Apply PV in Building Projects,” Energy Forum on Advanced Building Skins, Bressanone, Italy, pp. 47–51.
27.
DOE, BTO, and Managed by the NREL,
2016
, “EnergyPlus,” Washington, DC, acessed Feb. 21, 2018, https://energyplus.net/weather-location/south_america_wmo_region_3/BRA//BRA_Belem.821930_IWEC
28.
ABNT,
2005
, “NBR 15220—Parte 3: Zoneamento bioclimático brasileiro e diretrizes construtivas para habitações unifamiliares de interesse social,” Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ, Brazil.
29.
INPE, 2017, “
Atlas Brasileiro de Energia Solar
,” Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, Brazil.
30.
Alvares
,
C. A.
,
Stape
,
J. L.
,
Sentelhas
,
P. C.
,
De Moraes Gonçalves
,
J. L.
, and
Sparovek
,
G.
,
2013
, “
Koppen's Climate Classification Map for Brazil
,”
Meteorol. Z.
,
22
(
6
), pp.
711
728
.
31.
ONSET,
2016
, “HOBO® U30 Station Remote Communication User's Guide,” ONSET, Bourne, MA.
32.
DOE/BTO,
2016
, “Weather Data,” U.S. Department of Energy's/Building Technologies Office, Washington, DC, accessed Feb. 21, 2018, https://energyplus.net/weather
33.
ASHRAE
,
2009
,
Fundamentals Handbook
,
ASHRAE
, Atlanta, GA, p.
128
.
34.
Berkeley Lab, 2016, “
Auxiliary EnergyPlus Programs
,” Lawrence Berkeley National Laboratory, Berkeley, CA.
35.
Presidência da República,
2015
, “Diário Oficial da União,” Imprensa Nacional, Brasília, Brazil, accessed Feb. 4, 2015, http://portal.in.gov.br/
36.
Berkeley Lab, 2015, “
EnergyPlus Engineering Reference
,” Lawrence Berkeley National Laboratory, Berkeley, CA.
37.
Hong
,
T.
,
Chou
,
S. K.
, and
Bong
,
T. Y.
,
1999
, “
A Design Day for Building Load and Energy Estimation
,”
Energy Build.
,
34
(
4
), pp.
469
477
.
38.
Wang
,
Y.
,
Tian
,
W.
,
Ren
,
J.
,
Zhu
,
L.
, and
Wang
,
Q.
,
2006
, “
Influence of a Building's Integrated-Photovoltaics on Heating and Cooling Loads
,”
Appl. Energy
,
83
(
9
), pp.
989
1003
.
39.
Mangan
,
S. D.
, and
Koçlar Oral
,
G.
,
2016
, “
Energy, Economic and Environmental Analyses of Photovoltaic Systems in the Energy Renovation of Residential Buildings in Turkey
,”
ITU J. Fac. Arch.
,
13
(
2
), pp.
5
22
.
40.
Finlay
,
J. F.
,
2013
, “Valuation Methods for Building-Mounted Solar Photovoltaic Systems Expert Analysis,” Institute for Building Efficiency, Washington, DC, pp.
1
11
.
You do not currently have access to this content.