Abstract

This paper reports on a parametric investigation of the thermal enhancement of a double-reflector parabolic trough collector when employing an in-line mixed V-shape (IMVS) ribbed absorber tube. Three heat transfer fluids (HTFs) are investigated, and a wide range of fluid inlet temperatures are studied. Various geometric parameters of the V-shape rib are analyzed to determine the optimum design of such a modification to the wall of the absorber tube. Results show that the HTF thermal oil Syltherm 800 is superior to the other HTFs that were studied. Results also show that a lower inlet temperature of the HTF leads to better thermo-hydraulic performance. The study provides a set of values for designing a V-shape ribbed absorber tube that produces optimum thermo-hydraulic performance. The optimum ribbed tube design shows a performance enhancement of about 64% compared to a smooth tube.

References

1.
Price
,
H.
,
Lüpfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
109
125
.
2.
Praveen
,
R.
,
Abdul Baseer
,
M.
,
Awan
,
A. B.
, and
Zubair
,
M.
,
2018
, “
Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region
,”
Energies
,
11
(
4
), p.
741
.
3.
Sorbet
,
F. J.
,
Fernandez-Peruchena
,
C.
,
Zaversky
,
F.
,
Chakroun
,
W.
,
Alotaibi
,
S. A.
,
Ahmed
,
M.
,
Sanchez
,
M.
, and
García-Barberena
,
J.
,
2022
, “
Performance Assessment of Seawater, Wet and Dry Cooling in a 50-MW Parabolic Trough Collectors Concentrated Solar Power Plant in Kuwait
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041007
.
4.
Coccia
,
G.
,
Di Nicola
,
G.
, and
Sotte
,
M.
,
2015
, “
Design, Manufacture, and Test of a Prototype for a Parabolic Trough Collector for Industrial Process Heat
,”
Renewable Energy
,
74
, pp.
727
736
.
5.
Cabrera
,
F.
,
Fernández-García
,
A.
,
Silva
,
R.
, and
Pérez-García
,
M.
,
2013
, “
Use of Parabolic Trough Solar Collectors for Solar Refrigeration and Air-Conditioning Applications
,”
Renew. Sustain. Energy Rev.
,
20
, pp.
103
118
.
6.
Iqbal
,
A. A.
, and
Al-Alili
,
A.
,
2019
, “
Review of Solar Cooling Technologies in the MENA Region
,”
ASME J. Sol. Energy Eng.
,
141
(
1
), p.
010801
.
7.
Breeze
,
P.
,
2016
,
Solar Power Generation
,
Academic Press
,
New York, NY
.
8.
Aqachmar
,
Z.
,
Allouhi
,
A.
,
Jamil
,
A.
,
Gagouch
,
B.
, and
Kousksou
,
T.
,
2019
, “
Parabolic Trough Solar Thermal Power Plant Noor I in Morocco
,”
Energy
,
178
, pp.
572
584
.
9.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2020
, “
Enhancing the Performance of a Parabolic Trough Collector With Combined Thermal and Optical Techniques
,”
Appl. Therm. Eng.
,
164
, p.
114496
.
10.
Wang
,
P.
,
Liu
,
D.
, and
Xu
,
C.
,
2013
, “
Numerical Study of Heat Transfer Enhancement in the Receiver Tube of Direct Steam Generation With Parabolic Trough by Inserting Metal Foams
,”
Appl. Energy
,
102
, pp.
449
460
.
11.
Zhu
,
X.
,
Zhu
,
L.
, and
Zhao
,
J.
,
2017
, “
Wavy-Tape Insert Designed for Managing Highly Concentrated Solar Energy on Absorber Tube of Parabolic Trough Receiver
,”
Energy
,
141
, pp.
1146
1155
.
12.
Mwesigye
,
A.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2014
, “
Heat Transfer and Thermodynamic Performance of a Parabolic Trough Receiver With Centrally Placed Perforated Plate Inserts
,”
Appl. Energy
,
136
, pp.
989
1003
.
13.
Arunachala
,
U.
,
2020
, “
Experimental Study With Analytical Validation of Energy Parameters in Parabolic Trough Collector With Twisted Tape Insert
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031009
14.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 6th ed.
Wiley
New York
.
15.
Sokhansefat
,
T.
,
Kasaeian
,
A.
, and
Kowsary
,
F.
,
2014
, “
Heat Transfer Enhancement in Parabolic Trough Collector Tube Using Al2O3/synthetic Oil Nanofluid
,”
Renew. Sustain. Energy Rev.
,
33
, pp.
636
644
.
16.
Khakrah
,
H.
,
Shamloo
,
A.
, and
Kazemzadeh Hannani
,
S.
,
2017
, “
Determination of Parabolic Trough Solar Collector Efficiency Using Nanofluid: A Comprehensive Numerical Study
,”
ASME J. Sol. Energy Eng.
,
139
(
5
), p.
051006
.
17.
Mwesigye
,
A.
,
Huan
,
Z.
, and
Meyer
,
J. P.
,
2016
, “
Thermal Performance and Entropy Generation Analysis of a High Concentration Ratio Parabolic Trough Solar Collector With Cu-Therminol® VP-1 Nanofluid
,”
Energy Convers. Manage.
,
120
, pp.
449
465
.
18.
Reddy
,
K.
, and
Satyanarayana
,
G.
,
2008
, “
Numerical Study of Porous Finned Receiver for Solar Parabolic Trough Concentrator
,”
Eng. Appl. Comput. Fluid Mech.
,
2
(
2
), pp.
172
184
.
19.
Huang
,
Z.
,
Yu
,
G.
,
Li
,
Z.
, and
Tao
,
W.
,
2015
, “
Numerical Study on Heat Transfer Enhancement in a Receiver Tube of Parabolic Trough Solar Collector With Dimples, Protrusions and Helical Fins
,”
Energy Procedia
,
69
, pp.
1306
1316
.
20.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Gkinis
,
G.
,
2016
, “
Thermal Enhancement of Solar Parabolic Trough Collectors by Using Nanofluids and Converging-Diverging Absorber Tube
,”
Renewable Energy
,
94
, pp.
213
222
.
21.
Okonkwo
,
E. C.
,
Abid
,
M.
, and
Ratlamwala
,
T. A.
,
2018
, “
Numerical Analysis of Heat Transfer Enhancement in a Parabolic Trough Collector Based on Geometry Modifications and Working Fluid Usage
,”
ASME J. Sol. Energy Eng.
,
140
(
5
), p.
051009
.
22.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2017
, “
Thermal Enhancement of Parabolic Trough Collector With Internally Finned Absorbers
,”
Sol. Energy
,
157
, pp.
514
531
.
23.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2017
, “
Multi-Criteria Evaluation of Parabolic Trough Collector With Internally Finned Absorbers
,”
Appl. Energy
,
205
, pp.
540
561
24.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2018
, “
Optimum Number of Internal Fins in Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
137
, pp.
669
677
.
25.
Amina
,
B.
,
Miloud
,
A.
,
Samir
,
L.
,
Abdelylah
,
B.
, and
Solano
,
J.
,
2016
, “
Heat Transfer Enhancement in a Parabolic Trough Solar Receiver Using Longitudinal Fins and Nanofluids
,”
J. Thermal Sci.
,
25
(
5
), pp.
410
417
.
26.
Khan
,
M. S.
,
Yan
,
M.
,
Ali
,
H. M.
,
Amber
,
K. P.
,
Bashir
,
M. A.
,
Akbar
,
B.
, and
Javed
,
S.
,
2020
, “
Comparative Performance Assessment of Different Absorber Tube Geometries for Parabolic Trough Solar Collector Using Nanofluid
,”
J. Therm. Anal. Calorim.
,
142
(
6
), pp.
2227
2241
.
27.
Gong
,
X.
,
Wang
,
F.
,
Wang
,
H.
,
Tan
,
J.
,
Lai
,
Q.
, and
Han
,
H.
,
2017
, “
Heat Transfer Enhancement Analysis of Tube Receiver for Parabolic Trough Solar Collector With Pin Fin Arrays Inserting
,”
Sol. Energy
,
144
, pp.
185
202
.
28.
Montes
,
M. J.
,
Abánades
,
A.
, and
Martínez-Val
,
J. M.
,
2010
, “
Thermofluidynamic Model and Comparative Analysis of Parabolic Trough Collectors Using Oil, Water/Steam, or Molten Salt as Heat Transfer Fluids
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021001
.
29.
Buehler
,
R.
,
Yang
,
S.
, and
Ordonez
,
J. C.
,
2016
, “
Heat Transfer Fluids for Parabolic Trough Solar Collectors-A Comparative Study
,”
2016 IEEE Conference on Technologies for Sustainability (SusTech)
,
Phoenix, AZ
,
Oct. 9–11
,
IEEE
, pp.
68
75
.
30.
Ouagued
,
M.
,
Khellaf
,
A.
, and
Loukarfi
,
L.
,
2013
, “
Estimation of the Temperature, Heat Gain and Heat Loss by Solar Parabolic Trough Collector Under Algerian Climate Using Different Thermal Oils
,”
Energy Convers. Manage.
,
75
, pp.
191
201
.
31.
Merrouni
,
A. A.
,
Ouali
,
H. A. L.
,
Moussaoui
,
M. A.
, and
Mezrhab
,
A.
,
2016
, “
Analysis and Comparison of Different Heat Transfer Fluids for a 1MWe Parabolic Trough Collector
,”
2016 International Conference on Electrical and Information Technologies (ICEIT), Tangiers
,
Morocco
,
May 4–7
,
IEEE
, pp.
510
515
.
32.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Antonopoulos
,
K. A.
,
2017
, “
A Detailed Working Fluid Investigation for Solar Parabolic Trough Collectors
,”
Appl. Therm. Eng.
,
114
, pp.
374
386
.
33.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2017
, “
Parametric Investigation of Nanofluids Utilization in Parabolic Trough Collectors
,”
Ther. Sci. Eng. Prog.
,
2
, pp.
71
79
.
34.
Mwesigye
,
A.
, and
Yılmaz
,
İ. H.
,
2020
, “
Thermal and Thermodynamic Benchmarking of Liquid Heat Transfer Fluids in a High Concentration Ratio Parabolic Trough Solar Collector System
,”
J. Mol. Liq.
,
319
, p.
114151
.
35.
Krishna
,
Y.
,
Faizal
,
M.
,
Saidur
,
R.
,
Ng
,
K.
, and
Aslfattahi
,
N.
,
2020
, “
State-of-the-Art Heat Transfer Fluids for Parabolic Trough Collector
,”
Int. J. Heat. Mass. Transfer.
,
152
, p.
119541
.
36.
Altwijri
,
F.
,
Sherif
,
S. A.
, and
Alshwairekh
,
A.
,
2023
, “
Effect of Different Arrangements of V-shape Ribs on the Performance of an Optically-Enhanced Parabolic Trough Solar Collector
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031012
.
37.
Gong
,
J.-h.
,
Wang
,
J.
,
Lund
,
P. D.
,
Hu
,
E.-y.
,
Xu
,
Z.-c.
,
Liu
,
G.-p.
, and
Li
,
G.-s.
,
2020
, “
Improving the Performance of a 2-stage Large Aperture Parabolic Trough Solar Concentrator Using a Secondary Reflector Designed by Adaptive Method
,”
Renewable Energy
,
152
, pp.
23
33
.
38.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
39.
Petukhov
,
B.
,
1970
, “Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties,”
Advances in Heat Transfer
, Vol.
6
,
J.P.
Hartnet
, and
T. F.
Irvine
, Jr.
, eds.,
Academic Press
,
New York
, pp.
503
564
.
40.
Cheng
,
Z.
,
He
,
Y.
, and
Cui
,
F.
,
2012
, “
Numerical Study of Heat Transfer Enhancement by Unilateral Longitudinal Vortex Generators Inside Parabolic Trough Solar Receivers
,”
Int. J. Heat. Mass. Transfer.
,
55
(
21–22
), pp.
5631
5641
.
You do not currently have access to this content.