Abstract

The current work reports a numerical investigation of the water produced and thermal performance of a solar still (SS). Using a SS for desalination is a proposal for low-income remote communities needing potable water. The study deals with the SS under five different concentrations of salt (0, 5, 10, 20, and 35 g/kg). Previous experimental results reported in the literature indicate that the increase in salinity leads to a decrease in productivity, so phase change material (PCM) was added under the water basin to counter the reduction. The mathematical model and numerical methodology were validated by comparing them with experimental results reported in the literature. The relative difference between temperatures was less than 2%, and for water production, it was less than 3.5%. The present mathematical model has the novelty of utilizing the water properties as a function of temperature and salt concentration, contrary to other models that use pure water properties. The results show that daily productivity decreases when the salinity increases from 0 to 35 g/kg. For each case, the time evolution of hourly and cumulate productivity is presented, as well as water temperature and the temperature difference between water and glass. Also, the behavior of heat flux between water and PCM is analyzed. The overall efficiency is calculated for all the cases.

References

1.
Hussam
,
A.
,
2013
, “Potable Water: Nature and Purification,”
Monitoring Water Quality
,
S.
Ahuja
, ed.,
Elsevier
,
Amsterdam
, pp.
261
283
.
2.
Grandjean
,
A. C.
,
2005
, “Water Requirements, Impinging Factors and Recommended Intakes,”
Nutrients in Drinking Water
,
World Health Organization
,
Omaha, NE
,
25
40
, https://pdf4pro.com/amp/view/3-water-requirements-impinging-factors-29e6df.html
3.
WWAP (United Nations World Water Assessment Programme)
,
2015
,
The United Nations World Water Development Report 2015, Water for a Sustainable World
,
UNESCO
,
Paris
, https://unesdoc.unesco.org/ark:/48223/pf0000231823
4.
El-Dessouky
,
H. T.
, and
Ettouney
,
H. M.
,
2002
, “Introduction,”
Fundamentals of Salt Water Desalination
,
H. T.
El-Dessouky
, and
H. M.
Ettouney
, eds.,
Elsevier
,
Amsterdam
, pp.
1
17
.
5.
Rhoades
,
J. D.
,
Kandiah
,
A.
, and
Mashali
,
A. M.
,
1992
,
The Use of Saline Waters for Crop Production
,
FAO Irrigation and Drainage
,
Rome
, https://www.fao.org/3/T0667E/T0667E00.htm
6.
Millero
,
F. J.
,
Feistel
,
R.
,
Wright
,
D. G.
, and
McDougall
,
T. J.
,
2008
, “
The Composition of Standard Seawater and the Definition of the Reference-Composition Salinity Scale
,”
Deep Sea Res. Part I Oceanogr. Res. Pap.
,
55
(
1
), pp.
50
72
.
7.
Abdelkareem
,
M. A.
,
El Haj Assad
,
M.
,
Sayed
,
E. T.
, and
Soudan
,
B.
,
2018
, “
Recent Progress in the Use of Renewable Energy Sources to Power Water Desalination Plants
,”
Desalination
,
435
, pp.
97
113
.
8.
Dsilva Winfred Rufuss
,
D.
,
Iniyan
,
S.
,
Suganthi
,
L.
, and
Davies
,
P. A.
,
2016
, “
Solar Stills: A Comprehensive Review of Designs, Performance and Material Advances
,”
Renew. Sustain. Energy Rev.
,
63
, pp.
464
496
.
9.
Mohsenzadeh
,
M.
,
Aye
,
L.
, and
Christopher
,
P.
,
2021
, “
A Review on Various Designs for Performance Improvement of Passive Solar Stills for Remote Areas
,”
Sol. Energy
,
228
, pp.
594
611
.
10.
Saxena
,
A.
, and
Deval
,
N.
,
2016
, “
A High Rated Solar Water Distillation Unit for Solar Homes
,”
J. Eng.
,
2016
, p.
7937696
.
11.
Qiblawey
,
H. M.
, and
Banat
,
F.
,
2008
, “
Solar Thermal Desalination Technologies
,”
Desalination
,
220
(
1–3
), pp.
633
644
.
12.
Sakthivadivel
,
D.
,
Balaji
,
K.
,
Dsilva Winfred Rufuss
,
D.
,
Iniyan
,
S.
, and
Suganthi
,
L.
,
2021
, “Solar Energy Technologies: Principles and Applications,”
Renewable-Energy-Driven Future
,
J.
Ren
, ed.,
Academic Press
,
London
, pp.
3
42
.
13.
Almuhanna
,
E. A.
,
2014
, “
Evaluation of Single Slop Solar Still Integrated With Evaporative Cooling System for Brackish Water Desalination
,”
J. Agric. Sci.
,
6
(
1
), pp.
48
58
.
14.
Selvaraj
,
K.
, and
Natarajan
,
A.
,
2018
, “
Factors Influencing the Performance and Productivity of Solar Stills—A Review
,”
Desalination
,
435
, pp.
181
187
.
15.
Akash
,
B. A.
,
Mohsen
,
M. S.
, and
Nayfeh
,
W.
,
2000
, “
Experimental Study of the Basin Type Solar Still Under Local Climate Conditions
,”
Energy Convers. Manage.
,
41
(
9
), pp.
883
890
.
16.
Kalbasi
,
R.
, and
Esfahani
,
M. N.
,
2010
, “
Multi-Effect Passive Desalination System, An Experimental Approach
,”
World Appl. Sci. J.
,
10
(
10
), pp.
1264
1271
. http://www.idosi.org/wasj/WASJ10(10)/21.pdf
17.
Mahdi
,
J. T.
,
Smith
,
B. E.
, and
Sharif
,
A. O.
,
2011
, “
An Experimental Wick-Type Solar Still System: Design and Construction
,”
Desalination
,
267
(
2–3
), pp.
233
238
.
18.
Dev
,
R.
,
Abdul-Wahab
,
S. A.
, and
Tiwari
,
G. N.
,
2011
, “
Performance Study of the Inverted Absorber Solar Still With Water Depth and Total Dissolved Solid
,”
Appl. Energy
,
88
(
1
), pp.
252
264
.
19.
Hoque
,
A.
,
Abir
,
A. H.
, and
Paul Shourov
,
K.
,
2019
, “
Solar Still for Saline Water Desalination for Low-Income Coastal Areas
,”
Appl. Water Sci.
,
9
(
4
), pp.
1
8
.
20.
Dumka
,
P.
, and
Mishra
,
D. R.
,
2021
, “
Influence of Salt Concentration on the Performance Characteristics of Passive Solar Still
,”
Int. J. Ambient Energy
,
42
(
13
), pp.
1463
1473
.
21.
Karimi Estahbanati
,
M. R.
,
Ahsan
,
A.
,
Feilizadeh
,
M.
,
Jafarpur
,
K.
,
Ashrafmansouri
,
S.-S.
, and
Feilizadeh
,
M.
,
2016
, “
Theoretical and Experimental Investigation on Internal Reflectors in a Single-Slope Solar Still
,”
Appl. Energy
,
165
, pp.
537
547
.
22.
Al-Garni
,
A. Z.
,
2014
, “
Effect of External Reflectors on the Productivity of a Solar Still During Winter
,”
J. Energy Eng.
,
140
(
1
), p.
4013002
.
23.
El-Maghlany
,
W. M.
,
El-Samadony
,
Y. A. F.
, and
Kabeel
,
A. E.
,
2016
, “
Glass Cover Inclination Angle Effect on the Radiation Shape Factor Within Conventional Solar Still
,”
Desalin. Water Treat.
,
57
(
38
), pp.
17722
17730
.
24.
El-Samadony
,
Y. A. F.
,
El-Maghlany
,
W. M.
, and
Kabeel
,
A. E.
,
2016
, “
Influence of Glass Cover Inclination Angle on Radiation Heat Transfer Rate Within Stepped Solar Still
,”
Desalination
,
384
, pp.
68
77
.
25.
Alhadri
,
M.
,
Alatawi
,
I.
,
Alshammari
,
F.
,
Haleem
,
M. A.
,
Heniegal
,
A. M. A.
,
Abdelaziz
,
G. B.
,
Ahmed
,
M. M. Z.
,
Alqsair
,
U. F.
,
Kabeel
,
A. E.
, and
Elashmawy
,
M.
,
2022
, “
Design of a Low-Cost Parabolic Concentrator Solar Tracking System: Tubular Solar Still Application
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051006
.
26.
Muftah
,
A. F.
,
Sopian
,
K.
, and
Alghoul
,
M. A.
,
2018
, “
Performance of Basin Type Stepped Solar Still Enhanced With Superior Design Concepts
,”
Desalination
,
435
, pp.
198
209
.
27.
Omara
,
Z. M.
,
Kabeel
,
A. E.
,
Abdullah
,
A. S.
, and
Essa
,
F. A.
,
2016
, “
Experimental Investigation of Corrugated Absorber Solar Still With Wick and Reflectors
,”
Desalination
,
381
, pp.
111
116
.
28.
El-Sebaii
,
A. A.
, and
El-Naggar
,
M.
,
2017
, “
Year Round Performance and Cost Analysis of a Finned Single Basin Solar Still
,”
Appl. Therm. Eng.
,
110
, pp.
787
794
.
29.
Arunkumar
,
T.
,
Kabeel
,
A. E.
,
Raj
,
K.
,
Denkenberger
,
D.
,
Sathyamurthy
,
R.
,
Ragupathy
,
P.
, and
Velraj
,
R.
,
2018
, “
Productivity Enhancement of Solar Still by Using Porous Absorber With Bubble-Wrap Insulation
,”
J. Clean. Prod.
,
195
, pp.
1149
1161
.
30.
Modi
,
K. V.
,
Shukla
,
D. L.
, and
Ankoliya
,
D. B.
,
2018
, “
A Comparative Performance Study of Double Basin Single Slope Solar Still With and Without Using Nanoparticles
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031008
.
31.
Sharshir
,
S. W.
,
Peng
,
G.
,
Wu
,
L.
,
Yang
,
N.
,
Essa
,
F. A.
,
Elsheikh
,
A. H.
,
Mohamed
,
S. I. T.
, and
Kabeel
,
A. E.
,
2017
, “
Enhancing the Solar Still Performance Using Nanofluids and Glass Cover Cooling: Experimental Study
,”
Appl. Therm. Eng.
,
113
, pp.
684
693
.
32.
Khallaf
,
A. M.
,
El-Sebaii
,
A. A.
, and
Hegazy
,
M. M.
,
2021
, “
Investigation of Thermal Performance of Single Basin Solar Still With Soft Drink Cans Filled With Sand as a Storage Medium
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061011
.
33.
Deshmukh
,
H. S.
, and
Thombre
,
S. B.
,
2017
, “
Solar Distillation With Single Basin Solar Still Using Sensible Heat Storage Materials
,”
Desalination
,
410
(
May
), pp.
91
98
.
34.
El-Bialy
,
E.
,
2014
, “
Performance Analysis for Passive Single Slope Single Basin Solar Distiller With a Floating Absorber—An Experimental Study
,”
Energy
,
68
, pp.
117
124
.
35.
Kabeel
,
A. E.
,
Abdelgaied
,
M.
, and
Eisa
,
A.
,
2018
, “
Enhancing the Performance of Single Basin Solar Still Using High Thermal Conductivity Sensible Storage Materials
,”
J. Clean. Prod.
,
183
, pp.
20
25
.
36.
Harris Samuel
,
D. G.
,
Nagarajan
,
P. K.
,
Sathyamurthy
,
R.
,
El-Agouz
,
S. A.
, and
Kannan
,
E.
,
2016
, “
Improving the Yield of Fresh Water in Conventional Solar Still Using Low Cost Energy Storage Material
,”
Energy Convers. Manage.
,
112
, pp.
125
134
.
37.
Chauhan
,
V. K.
,
Shukla
,
S. K.
, and
Rathore
,
P. K. S.
,
2022
, “
A Systematic Review for Performance Augmentation of Solar Still With Heat Storage Materials: A State of Art
,”
J. Energy Storage
,
47
, p.
103578
.
38.
Joulin
,
A.
,
Younsi
,
Z.
,
Zalewski
,
L.
,
Rousse
,
D. R.
, and
Lassue
,
S.
,
2009
, “
A Numerical Study of the Melting of Phase Change Material Heated From a Vertical Wall of a Rectangular Enclosure
,”
Int. J. Comput. Fluid Dyn.
,
23
(
7
), pp.
553
566
.
39.
Sampathkumar
,
A.
,
Suraparaju
,
S. K.
, and
Natarajan
,
S. K.
,
2023
, “
Enhancement of Yield in Single Slope Solar Still by Composite Heat Storage Material—Experimental and Thermo-Economic Assessment
,”
ASME J. Sol. Energy Eng.
,
145
(
2
), p.
021005
.
40.
Ahmed
,
H. M.
,
Elsayed
,
B. A.
,
Ibrahim
,
G.
, and
Talisic
,
G. C.
,
2017
, “
Solar Still With Two Layouts Integrated Built-In Condenser and Real Time Monitoring System
,”
2017 4th IEEE International Conference on Engineering Technologies and Applied Sciences (ICETAS)
,
Salmabad, Bahrain
,
November
, pp.
1
7
.
41.
Rahbar
,
N.
,
Esfahani
,
J. A.
, and
Asadi
,
A.
,
2016
, “
An Experimental Investigation on Productivity and Performance of a New Improved Design Portable Asymmetrical Solar Still Utilizing Thermoelectric Modules
,”
Energy Convers. Manage.
,
118
, pp.
55
62
.
42.
Al-Garni
,
A. Z.
,
2012
, “
Productivity Enhancement of Solar Still Using Water Heater and Cooling Fan
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
031006
.
43.
Sathish Kumar
,
T. R.
, and
Jegadheeswaran
,
S.
,
2022
, “
Experimental Investigation on Finned Solar Still With Enhanced Thermal Energy Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
9
), p.
091001
.
44.
Tuly
,
S. S.
,
Ayon
,
A. B. S.
,
Hassan
,
R.
,
Das
,
B. K.
,
Khan
,
R. H.
, and
Sarker
,
M. R. I.
,
2022
, “
Performance Investigation of Active Double Slope Solar Stills Incorporating Internal Sidewall Reflector, Hollow Circular Fins, and Nanoparticle-Mixed Phase Change Material
,”
J. Energy Storage
,
55
, p.
105660
.
45.
Asbik
,
M.
,
Boushaba
,
H.
,
Hafs
,
H.
,
Koukouch
,
A.
,
Sabri
,
A.
, and
Muthu Manokar
,
A.
,
2021
, “
Investigating the Effect of Sensible and Latent Heat Storage Materials on the Performance of a Single Basin Solar Still During Winter Days
,”
J. Energy Storage
,
44
, p.
103480
.
46.
Moreno
,
S.
,
Alvarez
,
C.
,
Hinojosa
,
J. F.
, and
Maytorena
,
V. M.
,
2022
, “
Numerical Analysis of a Solar Still With Phase Change Material Under the Basin
,”
J. Energy Storage
,
55
, p.
105427
.
47.
Saxena
,
A.
,
Cuce
,
E.
,
Kabeel
,
A. E.
,
Abdelgaied
,
M.
, and
Goel
,
V.
,
2022
, “
A Thermodynamic Review on Solar Stills
,”
Sol. Energy
,
237
, pp.
377
413
.
48.
Keshtkar
,
M.
,
Eslami
,
M.
, and
Jafarpur
,
K.
,
2020
, “
A Novel Procedure for Transient CFD Modeling of Basin Solar Stills: Coupling of Species and Energy Equations
,”
Desalination
,
481
, p.
114350
.
49.
Mittal
,
G.
,
2021
, “
An Unsteady CFD Modelling of a Single Slope Solar Still
,”
Mater. Today Proc.
,
46
, pp.
10991
10995
.
50.
Patel
,
R. V.
,
Yadav
,
A.
, and
Winczek
,
J.
,
2021
, “
Experimental Investigation and Mathematical Modelling of Heat Transfer Coefficient in Double Slope Solar Still
,”
Stroj. Vestnik/J. Mech. Eng.
,
67
(
7–8
), pp.
369
379
.
51.
Hemmat Esfe
,
M.
,
Esfandeh
,
S.
, and
Toghraie
,
D.
,
2021
, “
Optimization of Influential Geometrical Parameters of Single Slope Solar Still Equipped With Thermoelectric System to Achieve Maximum Desalinated Water
,”
Energy Rep.
,
7
, pp.
5257
5268
.
52.
Shoeibi
,
S.
,
Kargarsharifabad
,
H.
,
Rahbar
,
N.
,
Ahmadi
,
G.
, and
Safaei
,
M. R.
,
2022
, “
Performance Evaluation of a Solar Still Using Hybrid Nanofluid Glass Cooling-CFD Simulation and Environmental Analysis
,”
Sustain. Energy Technol. Assess.
,
49
, p.
101728
.
53.
Hassan
,
H.
,
Omran Osman
,
O.
, and
abo-Elfadl
,
S.
,
2022
, “
Novel Dynamic Simulation Model and Detailed Performance Evaluation of Single Slope Solar Still: Impact of Side Walls Material
,”
Sol. Energy
,
244
, pp.
298
314
.
54.
Feilizadeh
,
M.
,
Soltanieh
,
M.
,
Karimi Estahbanati
,
M. R.
,
Jafarpur
,
K.
, and
Ashrafmansouri
,
S.-S.
,
2017
, “
Optimization of Geometrical Dimensions of Single-Slope Basin-Type Solar Stills
,”
Desalination
,
424
, pp.
159
168
.
55.
Ghiaasiaan
,
S. M.
,
2011
,
Convective Heat and Mass Transfer
,
Cambridge University Press
,
Cambridge, UK
.
56.
Poirier
,
D.
, and
Salcudean
,
M.
,
1988
, “
On Numerical Methods Used in Mathematical Modeling of Phase Change in Liquid Metals
,”
ASME J. Heat Transfer
,
110
(
3
), pp.
562
570
.
57.
ANSYS Inc. (USA)
,
2013
,
ANSYS Fluent Theory Guide
,
Canonsburg, PA
, pp.
565
572
.
58.
Vigneswaran
,
V. S.
,
Kumaresan
,
G.
,
Dinakar
,
B. V.
,
Kamal
,
K. K.
, and
Velraj
,
R.
,
2019
, “
Augmenting the Productivity of Solar Still Using Multiple PCMs as Heat Energy Storage
,”
J. Energy Storage
,
26
, p.
101019
.
59.
Nayar
,
K. G.
,
Sharqawy
,
M. H.
,
Banchik
,
L. D.
, and
Lienhard
,
J. H.
,
2016
, “
Thermophysical Properties of Seawater: A Review and New Correlations That Include Pressure Dependence
,”
Desalination
,
390
, pp.
1
24
.
60.
Sharshir
,
S. W.
,
Yang
,
N.
,
Peng
,
G.
, and
Kabeel
,
A. E.
,
2016
, “
Factors Affecting Solar Stills Productivity and Improvement Techniques: A Detailed Review
,”
Appl. Therm. Eng.
,
100
, pp.
267
284
.
You do not currently have access to this content.