Abstract

The need for maintaining thermal comfort conditions inside the building is a significant contributor to the total energy requirements of the buildings. Thus far, limited research has offered some strategies to mitigate the effect of ambient conditions on the thermal comfort and the building energy requirements for composite climatic zone in India. In order to address this problem, this study was conducted to evaluate and analyze the impacts of four different passive design strategies, i.e., insulation, cool roof, phase change material (PCM) thermal storage system, and shading, on thermal comfort and energy demand in the two-storey building situated in the composite climate zone of Delhi, India. The results obtained by numerical simulation for four different cities, i.e., Delhi, Jaipur, Lucknow, and Indore, have been compared to study the effect of local climatic and seasonal variations within the composite climatic zones. The simulations were conducted using the Design Builder software to capture results for one year. The results indicate that no single passive design strategy is sufficient to maintain comfortable conditions inside the building. The cool roof provides significant benefits in combination with other passive technologies in all seasons except for December, January, and February. The combination of insulation and PCM is useful for winter conditions. Energy saving of up to 20.5% is possible using the combination of all four passive strategies, whereas the cool roof alone gives an 18% reduction in energy load. The PCM with a melting point of about 32 °C is suggested for the cities under study.

References

1.
Buildings Energy Consumption in India Is Expected to Increase Faster Than in Other Regions—Today in Energy—U.S. Energy Information Administration (EIA)
,” https://www.eia.gov/todayinenergy/detail.php?id=33252
2.
Ali
,
S. F.
, and
Rakshit
,
D.
,
2020
, “Utilising Passive Design Strategies for Analysing Thermal Comfort Levels Inside an Office Room Using PMV-PPD Models,”
Solar Energy
,
H.
Tyagi
,
P. R.
Chakraborty
,
S.
Powar
, and
A. K.
Agarwal
, eds.,
Springer Nature Singapore Pte Ltd.
,
Singapore
.
3.
Chen
,
Y.
,
Athienitis
,
A. K.
, and
Galal
,
K. E.
,
2013
, “
Frequency Domain and Finite Difference Modeling of Ventilated Concrete Slabs and Comparison With Field Measurements: Part 1, Modeling Methodology
,”
Int. J. Heat Mass Transfer
,
66
, pp.
948
956
.
4.
Chen
,
Y.
,
Athienitis
,
A. K.
, and
Galal
,
K. E.
,
2013
, “
Frequency Domain and Finite Difference Modeling of Ventilated Concrete Slabs and Comparison With Field Measurements: Part 2. Application
,”
Int. J. Heat Mass Transfer
,
66
, pp.
957
966
.
5.
Sanjay
,
A.
,
Saikia
,
P.
, and
Rakshit
,
D.
,
2020
, “
Thermal Energy Performance of an Academic Building With Sustainable Probing and Optimization With Evolutionary Algorithm
,”
Therm. Sci. Eng. Prog.
,
17
, p.
100374
.
6.
Ali
,
S. F.
,
Sharma
,
L.
,
Rakshit
,
D.
, and
Bhattacharjee
,
B.
,
2020
, “
Influence of Passive Design Parameters on Thermal Comfort of an Office Space in a Building in Delhi
,”
J. Archit. Eng.
,
26
(
3
), p.
04020017
.
7.
Nematchoua
,
M. K.
,
Noelson
,
J. C.
,
Saadi
,
I.
,
Kenfack
,
H.
,
Andrianaharinjaka
,
A. Z.
,
Ngoumdoum
,
D. F.
,
Sela
,
J. B.
, and
Reiter
,
S.
,
2020
, “
Application of Phase Change Materials, Thermal Insulation, and External Shading for Thermal Comfort Improvement and Cooling Energy Demand Reduction in an Office Building Under Different Coastal Tropical Climates
,”
Sol. Energy
,
207
, pp.
458
470
.
8.
Subhashini
,
S.
, and
Thirumaran
,
K.
,
2018
, “
A Passive Design Solution to Enhance Thermal Comfort in an Educational Building in the Warm Humid Climatic Zone of Madurai
,”
J. Build. Eng.
,
18
, pp.
395
407
.
9.
Al-yasiri
,
Q.
,
2021
, “
Incorporation of Phase Change Materials Into Building Envelope for Thermal Comfort and Energy Saving: A Comprehensive Analysis
,”
J. Build. Eng.
,
36
, pp.
102
122
.
10.
Guarino
,
F.
,
Athienitis
,
A.
,
Cellura
,
M.
, and
Bastien
,
D.
,
2017
, “
PCM Thermal Storage Design in Buildings: Experimental Studies and Applications to Solaria in Cold Climates
,”
Appl. Energy
,
185
, pp.
95
106
.
11.
Evola
,
G.
,
Marletta
,
L.
, and
Sicurella
,
F.
,
2014
, “
Simulation of a Ventilated Cavity to Enhance the Effectiveness of PCM Wallboards for Summer Thermal Comfort in Buildings
,”
Energy Build.
,
70
, pp.
480
489
.
12.
Vaishnani
,
Y.
,
Fatima
,
S.
,
Aditya
,
A.
,
Dibakar
,
J.
, and
Fujen
,
R.
,
2020
, “
Thermal Performance Analysis of a Naturally Ventilated System Using PMV Models for Different Roof Inclinations in Composite Climatic Conditions
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
3
), pp.
1
16
.
13.
Ihm
,
P.
, and
Krarti
,
M.
,
2013
, “
Design Optimization of Energy Efficient Office Buildings in Tunisia
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
040908
.
14.
Xu
,
J.
, and
Raman
,
A. P.
, “
Controlling Radiative Heat Flows in Interior Spaces to Improve Heating and Cooling Efficiency
,”
iScience
,
24
(
8
), p.
102825
.
15.
Prabhakar
,
M.
,
Saffari
,
M.
,
De Gracia
,
A.
, and
Cabeza
,
L. F.
,
2020
, “
Energy & Buildings Improving the Energy Efficiency of Passive PCM System Using Controlled Natural Ventilation
,”
Energy Build.
,
228
, p.
110483
.
16.
He
,
Y.
,
Yu
,
H.
,
Ozaki
,
A.
, and
Dong
,
N.
,
2020
, “
Thermal and Energy Performance of Green Roof and Cool Roof: A Comparison Study in Shanghai Area
,”
J. Cleaner Prod.
,
267
, p.
122205
.
17.
Sedaghat
,
A.
,
Sabati
,
M.
,
Alkhatib
,
F.
,
Oloomi
,
S. A.
,
Sabri
,
F.
,
Salem
,
H.
,
Zafar
,
W. J.
, and
Malayer
,
M. A.
,
2021
, “
Climate Change and Thermo-Solar Patterns of Office Buildings With/Without Window Films in Extreme Hot-Arid Climate of Kuwait
,”
Sol. Energy
,
217
, pp.
354
374
. doi.org/10.1016/j.solener.2021.02.051
18.
Castell
,
A.
, and
Farid
,
M. M.
,
2014
, “
Experimental Validation of a Methodology to Assess PCM Effectiveness in Cooling Building Envelopes Passively
,”
Energy Build.
,
81
, pp.
59
71
.
19.
Khotbehsara
,
E. M.
,
Daemei
,
A. B.
, and
Malekjahan
,
F. A.
,
2019
, “
Simulation Study of the Eco Green Roof in Order to Reduce Heat Transfer in Four Different Climatic Zones
,”
Results Eng.
,
2
, p.
100010
.
20.
Kumar
,
A.
, and
Suman
,
B. M.
,
2013
, “
Experimental Evaluation of Insulation Materials for Walls and Roofs and Their Impact on Indoor Thermal Comfort Under Composite Climate
,”
Build. Environ.
,
59
, pp.
635
643
.
21.
Sabapathy
,
K. A.
, and
Gedupudi
,
S.
,
2020
, “
On the Influence of Concrete-Straw-Plaster Envelope Thermal Mass on the Cooling and Heating Loads for Different Climatic Zones of India
,”
J. Cleaner Prod.
,
276
, p.
123117
.
22.
Wati
,
E.
,
Meukam
,
P.
, and
Nematchoua
,
M. K.
,
2015
, “
Influence of External Shading on Optimum Insulation Thickness of Building Walls in a Subtropical Region
,”
Appl. Therm. Eng.
,
90
, pp.
754
762
.
23.
Arumugam
,
R. S.
,
Garg
,
V.
,
Ram
,
V. V.
, and
Bhatia
,
A.
,
2015
, “
Optimizing Roof Insulation for Roofs With High Albedo Coating and Radiant Barriers in India
,”
J. Build. Eng.
,
2
, pp.
52
58
.
24.
Bano
,
F.
, and
Sehgal
,
V.
,
2018
, “
Evaluation of Energy-Efficient Design Strategies: Comparison of the Thermal Performance of Energy-Efficient Office Buildings in Composite Climate, India
,”
Sol. Energy
,
176
, pp.
506
519
.
25.
Doctor-Pingel
,
M.
,
Vardhan
,
V.
,
Manu
,
S.
,
Brager
,
G.
, and
Rawal
,
R.
,
2019
, “
A Study of Indoor Thermal Parameters for Naturally Ventilated Occupied Buildings in the Warm-Humid Climate of Southern India
,”
Build. Environ.
,
151
, pp.
1
14
.
26.
Rawat
,
M.
, and
Singh
,
R. N.
,
2021
, “
Performance Evaluation of a Cool Roof Model in Composite Climate
,”
Mater. Today Proc.
,
44
, pp.
4956
4960
.
27.
Dabaieh
,
M.
,
Wanas
,
O.
,
Hegazy
,
M. A.
, and
Johansson
,
E.
,
2015
, “
Reducing Cooling Demands in a Hot Dry Climate: A Simulation Study for Non-insulated Passive Cool Roof Thermal Performance in Residential Buildings
,”
Energy Build.
,
89
, pp.
142
152
.
28.
Garg
,
V.
,
Somal
,
S.
,
Arumugam
,
R.
, and
Bhatia
,
A.
,
2016
, “
Development for Cool Roof Calculator for India
,”
Energy Build.
,
114
, pp.
136
142
.
29.
Bendara
,
S.
,
Bekkouche
,
S. M. A.
,
Benouaz
,
T.
,
Belaid
,
S.
,
Hamdani
,
M.
,
Cherier
,
M. K.
,
Boutelhig
,
A.
, and
Benamrane
,
N.
,
2019
, “
Energy Efficiency and Insulation Thickness According to the Compactness Index Case of a Studio Apartment Under Saharan Weather Conditions
,”
ASME J. Sol. Energy Eng.
,
141
(
4
), p.
041011
.
30.
Biplab
,
K.
, and
Rakshit
,
D.
,
2017
, “
Comparative Assessment of Thermal Comfort With Insulation and Phase Change Materials Utilizations in Building Roofs and Walls
,”
Adv. Mater. Proceedings
,
2
(
6
), pp.
393
397
.
31.
Mourid
,
A.
, and
El Alami
,
M.
,
2017
, “
Thermal Behavior of a Building Provided With Phase-Change Materials on the Roof and Exposed to Solar Radiation
,”
ASME J. Sol. Energy Eng.
,
139
(
6
), p.
061012
.
32.
Beemkumar
,
N.
,
Yuvarajan
,
D.
,
Arulprakasajothi
,
M.
,
Ganesan
,
S.
,
Elangovan
,
K.
, and
Senthilkumar
,
G.
,
2020
, “
Experimental Investigation and Numerical Modeling of Room Temperature Control in Buildings by the Implementation of Phase Change Material in the Roof
,”
ASME J. Sol. Energy Eng.
,
142
(
1
), p.
011011
.
33.
Saxena
,
R.
,
Agarwal
,
N.
,
Rakshit
,
D.
, and
Kaushik
,
S. C.
,
2020
, “
Suitability Assessment and Experimental Characterization of Phase Change Materials for Energy Conservation in Indian Buildings
,”
ASME J. Sol. Energy Eng.
,
142
(
1
), p.
011014
.
34.
Konuklu
,
Y.
, and
Paksoy
,
,
2009
, “
Phase Change Material Sandwich Panels for Managing Solar Gain in Buildings
,”
ASME J. Sol. Energy Eng.
,
131
(
4
), p.
041012
.
35.
Saxena
,
R.
,
Biplab
,
K.
, and
Rakshit
,
D.
,
2018
, “
Quantitative Assessment of Phase Change Material Utilization for Building Cooling Load Abatement in Composite Climatic Condition
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011001
.
36.
ECBC Residential | Bureau of Energy Efficiency
,” https://beeindia.gov.in/content/ecbc-residential
37.
Bhatnagar
,
M.
,
Mathur
,
J.
, and
Garg
,
V.
,
2018
, “
Determining Base Temperature for Heating and Cooling Degree-Days for India
,”
J. Build. Eng.
,
18
, pp.
270
280
.
38.
Shaik
,
S.
,
Gorantla
,
K.
, and
Setty
,
A. B. T. P.
,
2016
, “
Effect of Window Overhang Shade on Heat Gain of Various Single Glazing Window Glasses for Passive Cooling
,”
Procedia Technol.
,
23
, pp.
439
446
.
39.
Alam
,
M.
,
Jamil
,
H.
,
Sanjayan
,
J.
, and
Wilson
,
J.
,
2014
, “
Energy Saving Potential of Phase Change Materials in Major Australian Cities
,”
Energy Build.
,
78
, pp.
192
201
.
40.
Sovetova
,
M.
,
Memon
,
S. A.
, and
Kim
,
J.
,
2019
, “
Thermal Performance and Energy Efficiency of Building Integrated With PCMs in Hot Desert Climate Region
,”
Sol. Energy
,
189
, pp.
357
371
.
41.
Soares
,
N.
,
Costa
,
J. J.
,
Gaspar
,
A. R.
, and
Santos
,
P.
,
2013
, “
Review of Passive PCM Latent Heat Thermal Energy Storage Systems Towards Buildings’ Energy Efficiency
,”
Energy Build.
,
59
, pp.
82
103
.
42.
Ramakrishnan
,
S.
,
Wang
,
X.
,
Sanjayan
,
J.
, and
Wilson
,
J.
,
2017
, “
Thermal Performance of Buildings Integrated With Phase Change Materials to Reduce Heat Stress Risks During Extreme Heatwave Events
,”
Appl. Energy
,
194
, pp.
410
421
.
43.
Bhatnagar
,
M.
,
Mathur
,
J.
, and
Garg
,
V.
,
2019
, “
Development of Reference Building Models for India
,”
J. Build. Eng.
,
21
, pp.
267
277
.
44.
Occupant Thermal Comfort: Engineering Reference—EnergyPlus 9.0
,” https://bigladdersoftware.com/epx/docs/9-0/engineering-reference/occupant-thermal-comfort.html
You do not currently have access to this content.