Abstract

Compound parabolic concentrator (CPC), as a hybrid of the stationary and the tracking collectors, can collect both direct beam and diffuse radiation. CPCs are favorable choices for medium-temperature applications for their high thermal efficiency and their cost-effectiveness. Optical models are important tools to predict the solar concentrating capability of the CPC. Despite the numerous, optical models developed in the literature and used for parametric studies of the optical characteristics of CPCs, the angular optical properties of the glass envelope, reflector, and receiver are rarely included. Moreover, most existing optical modeling studies of CPCs did not consider or present the loss associated with the refraction in the glass envelope. This study aims to fill these gaps by developing a comprehensive CPC optical model with the capability of profile generation, hybrid ray-tracing (HRT), surface property simulation, and sky model. The HRT can achieve high accuracy using significantly fewer computation resources compared with Monte Carlo ray-tracing (MCRT) and was validated against tracepro. The new optical model incorporates angular and spectrum dependence of optical properties for refraction and reflection using multilayer thin-film theory. Finally, the proposed HRT model was used to analyze the error associated with neglecting geometric design parameters and angular dependency of optical properties in optical simulation. The results suggest that the gaps between the receiver, glass envelope, and the reflector, the refraction of the glass and angular dependence of transmittance, and absorptance should be included in simulation to avoid considerable errors.

References

1.
Hang
,
Y.
,
Du
,
L.
,
Qu
,
M.
, and
Peeta
,
S.
,
2013
, “
Multi-Objective Optimization of Integrated Solar Absorption Cooling and Heating Systems for Medium-Sized Office Buildings
,”
Renewable Energy
,
52
, pp.
67
78
. 10.1016/j.renene.2012.10.004
2.
Hang
,
Y.
,
Qu
,
M.
, and
Ukkusuri
,
S.
,
2011
, “
Optimizing the Design of a Solar Cooling System Using Central Composite Design Techniques
,”
Energy Build.
,
43
(
4
), pp.
988
994
. 10.1016/j.enbuild.2010.12.024
3.
Henning
,
H.-M.
,
2007
, “
Solar Assisted Air Conditioning of Buildings—An Overview
,”
Appl. Therm. Eng.
,
27
(
10
), pp.
1734
1749
. 10.1016/j.applthermaleng.2006.07.021
4.
Hidalgo
,
M. C. R.
,
Aumente
,
P. R.
,
Millán
,
M. I.
,
Neumann
,
A. L.
, and
Mangual
,
R. S.
,
2008
, “
Energy and Carbon Emission Savings in Spanish Housing Air-Conditioning Using Solar Driven Absorption System
,”
Appl. Therm. Eng.
,
28
(
14–15
), pp.
1734
1744
. 10.1016/j.applthermaleng.2007.11.013
5.
Kreith
,
F.
, and
Kreider
,
J. F.
,
1976
, “
Preliminary Design and Economic Analysis of Solar-Energy Systems for Heating and Cooling of Buildings
,”
Energy
,
1
(
1
), pp.
63
76
. 10.1016/0360-5442(76)90058-X
6.
Lu
,
Z. S.
,
Wang
,
R. Z.
,
Xia
,
Z. Z.
,
Lu
,
X. R.
,
Yang
,
C. B.
,
Ma
,
Y. C.
, and
Ma
,
G. B.
,
2013
, “
Study of a Novel Solar Adsorption Cooling System and a Solar Absorption Cooling System With New CPC Collectors
,”
Renewable Energy
,
50
, pp.
299
306
. 10.1016/j.renene.2012.07.001
7.
Mateus
,
T.
, and
Oliveira
,
A. C.
,
2009
, “
Energy and Economic Analysis of an Integrated Solar Absorption Cooling and Heating System in Different Building Types and Climates
,”
Appl. Energy
,
86
(
6
), pp.
949
957
. 10.1016/j.apenergy.2008.09.005
8.
Tsoutsos
,
T.
,
Aloumpi
,
E.
,
Gkouskos
,
Z.
, and
Karagiorgas
,
M.
,
2010
, “
Design of a Solar Absorption Cooling System in a Greek Hospital
,”
Energy Build.
,
42
(
2
), pp.
265
272
. 10.1016/j.enbuild.2009.09.002
9.
Hang
,
Y.
,
Qu
,
M.
,
Winston
,
R.
,
Jiang
,
L.
,
Widyolar
,
B.
, and
Poiry
,
H.
,
2014
, “
Experimental Based Energy Performance Analysis and Life Cycle Assessment for Solar Absorption Cooling System at University of Californian, Merced
,”
Energy Build.
,
82
, pp.
746
757
. 10.1016/j.enbuild.2014.07.078
10.
Hang
,
Y.
,
Qu
,
M.
, and
Zhao
,
F.
,
2011
, “
Economical and Environmental Assessment of an Optimized Solar Cooling System for a Medium-Sized Benchmark Office Building in Los Angeles, California
,”
Renewable Energy
,
36
(
2
), pp.
648
658
. 10.1016/j.renene.2010.08.005
11.
Sekret
,
R.
, and
Turski
,
M.
,
2012
, “
Research on an Adsorption Cooling System Supplied by Solar Energy
,”
Energy Build.
,
51
, pp.
15
20
. 10.1016/j.enbuild.2012.04.008
12.
Assilzadeh
,
F.
,
Kalogirou
,
S. A.
,
Ali
,
Y.
, and
Sopian
,
K.
,
2005
, “
Simulation and Optimization of a LiBr Solar Absorption Cooling System With Evacuated Tube Collectors
,”
Renewable Energy
,
30
(
8
), pp.
1143
1159
. 10.1016/j.renene.2004.09.017
13.
Calise
,
F.
,
d’Accadia
,
M. D.
, and
Vanoli
,
L.
,
2011
, “
Thermoeconomic Optimization of Solar Heating and Cooling Systems
,”
Energy Convers. Manag.
,
52
(
2
), pp.
1562
1573
. 10.1016/j.enconman.2010.10.025
14.
Eicker
,
U.
, and
Pietruschka
,
D.
,
2009
, “
Design and Performance of Solar Powered Absorption Cooling Systems in Office Buildings
,”
Energy Build.
,
41
(
1
), pp.
81
91
. 10.1016/j.enbuild.2008.07.015
15.
Elsafty
,
A.
, and
Al-Daini
,
A. J.
,
2002
, “
Economical Comparison Between a Solar-Powered Vapour Absorption Air-Conditioning System and a Vapour Compression System in the Middle East
,”
Renewable Energy
,
25
(
4
), pp.
569
583
. 10.1016/S0960-1481(01)00078-7
16.
Gebreslassie
,
B. H.
,
Guillén-Gosálbez
,
G.
,
Jiménez
,
L.
, and
Boer
,
D.
,
2010
, “
A Systematic Tool for the Minimization of the Life Cycle Impact of Solar Assisted Absorption Cooling Systems
,”
Energy
,
35
(
9
), pp.
3849
3862
. 10.1016/j.energy.2010.05.039
17.
Grossman
,
G.
,
2002
, “
Solar-Powered Systems for Cooling, Dehumidification and Air-Conditioning
,”
Sol. Energy
,
72
(
1
), pp.
53
62
. 10.1016/S0038-092X(01)00090-1
18.
Li
,
X.
,
Dai
,
Y. J.
,
Li
,
Y.
, and
Wang
,
R. Z.
,
2013
, “
Performance Investigation on a Novel Single-Pass Evacuated Tube With a Symmetrical Compound Parabolic Concentrator
,”
Sol. Energy
,
98
, pp.
275
289
. 10.1016/j.solener.2013.10.015
19.
Gómez-Couso
,
H.
,
Fontán-Sainz
,
M.
,
Fernández-Ibáñez
,
P.
, and
Ares-Mazás
,
E.
,
2012
, “
Speeding up the Solar Water Disinfection Process (SODIS) Against Cryptosporidium Parvum by Using 2.5 l Static Solar Reactors Fitted With Compound Parabolic Concentrators (CPCs)
,”
Acta Trop.
,
124
(
3
), pp.
235
242
. 10.1016/j.actatropica.2012.08.018
20.
Chang
,
Z.
,
Zheng
,
H.
,
Yang
,
Y.
,
Su
,
Y.
, and
Duan
,
Z.
,
2014
, “
Experimental Investigation of a Novel Multi-Effect Solar Desalination System Based on Humidification–Dehumidification Process
,”
Renewable Energy
,
69
, pp.
253
259
. 10.1016/j.renene.2014.03.048
21.
Mokhtar
,
M.
,
Ali
,
M. T.
,
Khalilpour
,
R.
,
Abbas
,
A.
,
Shah
,
N.
,
Al Hajaj
,
A.
,
Armstrong
,
P.
,
Chiesa
,
M.
, and
Sgouridis
,
S.
,
2012
, “
Solar-Assisted Post-Combustion Carbon Capture Feasibility Study
,”
Appl. Energy
,
92
, pp.
668
676
. 10.1016/j.apenergy.2011.07.032
22.
Kim
,
Y. S.
,
Balkoski
,
K.
,
Jiang
,
L.
, and
Winston
,
R.
,
2013
, “
Efficient Stationary Solar Thermal Collector Systems Operating at a Medium-Temperature Range
,”
Appl. Energy
,
111
, pp.
1071
1079
. 10.1016/j.apenergy.2013.06.051
23.
Xu
,
D.
, and
Qu
,
M.
,
2014
, “
Experimental Performance Analysis of External Compound Parabolic Concentrators With Low Concentration Ratios for Medium Temperature Applications
,”
ASME 2014 8th International Conference on Energy Sustainability Collocated With the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology
,
Boston, MA
,
June 30–July 2
, pp.
1
9
.
24.
Winston
,
R.
,
1974
, “
Principles of Solar Concentrators of a Novel Design
,”
Sol. Energy
,
16
(
2
), pp.
89
95
. 10.1016/0038-092X(74)90004-8
25.
Winston
,
R.
,
1989
, “
High Collection Nonimaging Optics
,”
6th Mtg in Israel on Optical Engineering
,
Tel Aviv, Israel
,
July 5
, pp.
590
598
.
26.
Carvalho
,
M. J.
,
Collares-Pereira
,
M.
,
Gordon
,
J. M.
, and
Rabl
,
A.
,
1985
, “
Truncation of CPC Solar Collectors and Its Effect on Energy Collection
,”
Sol. Energy
,
35
(
5
), pp.
393
399
. 10.1016/0038-092X(85)90127-6
27.
El-Assay Cairo
,
A. Y.
, and
Clark
,
J. A.
,
1987
, “
A Thermal-Optical Analysis of a Compound Parabolic Concentrator for Single and Multiphase Flows, Including Superheat
,”
Wärme-und Stoffübertragung
,
21
(
2–3
), pp.
189
198
. 10.1007/BF01377577
28.
Fraidenraich
,
N.
,
Tiba
,
C.
,
Brandão
,
B. B.
, and
Vilela
,
O. C.
,
2008
, “
Analytic Solutions for the Geometric and Optical Properties of Stationary Compound Parabolic Concentrators With Fully Illuminated Inverted V Receiver
,”
Sol. Energy
,
82
(
2
), pp.
132
143
. 10.1016/j.solener.2007.06.012
29.
Tíba
,
C.
, and
Fraidenraich
,
N.
,
2011
, “
Optical and Thermal Optimization of Stationary Non-Evacuated CPC Solar Concentrator With Fully Illuminated Wedge Receivers
,”
Renewable Energy
,
36
(
9
), pp.
2547
2553
. 10.1016/j.renene.2011.02.007
30.
Kessentini
,
H.
, and
Bouden
,
C.
,
2013
, “
Numerical and Experimental Study of an Integrated Solar Collector With CPC Reflectors
,”
Renewable Energy
,
57
, pp.
577
586
. 10.1016/j.renene.2013.02.015
31.
Carvalho
,
M. J.
,
Collares-Pereira
,
M.
, and
Gordon
,
J. M.
,
1985
, “
Economic Optimization of Stationary Non-evacuated CPC Solar Collectors
,”
the Ninth Biennial Congress of the International Solar Energy Society
,
Montreal, Canada
,
June 23–29
, pp.
1
6
.
32.
Dai
,
G.-L.
,
Xia
,
X.-L.
,
Sun
,
C.
, and
Zhang
,
H.-C.
,
2011
, “
Numerical Investigation of the Solar Concentrating Characteristics of 3D CPC and CPC-DC
,”
Sol. Energy
,
85
(
11
), pp.
2833
2842
. 10.1016/j.solener.2011.08.022
33.
Cooper
,
T.
,
Dähler
,
F.
,
Ambrosetti
,
G.
,
Pedretti
,
A.
, and
Steinfeld
,
A.
,
2013
, “
Performance of Compound Parabolic Concentrators With Polygonal Apertures
,”
Sol. Energy
,
95
, pp.
308
318
. 10.1016/j.solener.2013.06.023
34.
Li
,
X.
,
Dai
,
Y. J.
,
Li
,
Y.
, and
Wang
,
R. Z.
,
2013
, “
Comparative Study on Two Novel Intermediate Temperature CPC Solar Collectors With the U-Shape Evacuated Tubular Absorber
,”
Sol. Energy
,
93
, pp.
220
234
. 10.1016/j.solener.2013.04.002
35.
Sellami
,
N.
, and
Mallick
,
T. K.
,
2013
, “
Optical Efficiency Study of PV Crossed Compound Parabolic Concentrator
,”
Appl. Energy
,
102
, pp.
868
876
. 10.1016/j.apenergy.2012.08.052
36.
Khonkar
,
H. E. I.
, and
Sayigh
,
A. A. M.
,
1995
, “
Optimization of the Tubular Absorber Using a Compound Parabolic Concentrator
,”
Renewable Energy
,
6
(
1
), pp.
17
21
. 10.1016/0960-1481(94)00061-A
37.
Macêdo
,
I. C.
, and
Faria Alves
,
C. L.
,
1983
, “
Studies on Radiation Intensity Distribution in the Focus of Compound Parabolic Concentrators
,”
Sol. Energy
,
30
(
1
), pp.
79
83
. 10.1016/0038-092X(83)90009-9
38.
Xu
,
D.
, and
Qu
,
M.
,
2013
, “
Compound Parabolic Concentrators in Solar Thermal Applications: A Review
,”
ASME 2013 7th International Conference on Energy Sustainability Collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
,
Minneapolis, MN
,
July 14–19
, pp.
1
10
.
39.
Khonkar
,
H. E. I.
, and
Sayigh
,
A. A. M.
,
1994
, “
Raytrace for Compound Parabolic Concentrator
,”
Renewable Energy
,
5
(
1–4
), pp.
376
383
. 10.1016/0960-1481(94)90400-6
40.
Li
,
Z.
,
Diaz
,
L. A.
,
Yang
,
Z.
,
Jin
,
H.
,
Lister
,
T. E.
,
Vahidi
,
E.
, and
Zhao
,
F.
,
2019
, “
Comparative Life Cycle Analysis for Value Recovery of Precious Metals and Rare Earth Elements From Electronic Waste
,”
Resour. Conserv. Recycl.
,
149
, pp.
20
30
.
41.
Petrasch
,
J.
,
2010
, “
A Free and Open Source Monte Carlo Ray Tracing Program for Concentrating Solar Energy Research
,”
ASME 2010 4th International Conference on Energy Sustainability
,
Phoenix, AZ
,
May 17–22
, pp.
125
132
.
42.
Osório
,
T.
,
Horta
,
P.
,
Larcher
,
M.
,
Pujol-Nadal
,
R.
,
Hertel
,
J.
,
Van Rooyen
,
D. W.
,
Heimsath
,
A.
,
Schneider
,
S.
,
Benitez
,
D.
, and
Frein
,
A.
,
2016
, “
Ray-Tracing Software Comparison for Linear Focusing Solar Collectors
,”
AIP Conf. Proc.
,
1734
, p.
20017
. 10.1063/1.4949041
43.
Cardoso
,
J. P.
,
Mutuberria
,
A.
,
Marakkos
,
C.
,
Schoettl
,
P.
,
Osório
,
T.
, and
Les
,
I.
,
2018
, “
New Functionalities for the Tonatiuh Ray-Tracing Software
,”
AIP Conf. Proc.
,
2033
, p.
210010
. 10.1063/1.5067212
44.
Pujol-Nadal
,
R.
,
Martínez-Moll
,
V.
,
Moià-Pol
,
A.
,
Cardona
,
G.
,
Hertel
,
J. D.
, and
Bonnín
,
F.
,
2016
, “
OTSun Project: Development of a Computational Tool for High-Resolution Optical Analysis of Solar Collectors
,”
Proceedings of the 11th ISES EUROSUN 2016 Conference
,
Palma, Spain
,
Oct. 11–14
, pp.
11
14
.
45.
Hertel
,
J. D.
,
Martínez-Moll
,
V.
,
Pujol-Nadal
,
R.
, and
Bonnín
,
F.
,
2016
, “
State of the Art of Radiation-Matter Interaction Models Applied for the Optical Characterization of Concentrating Solar Collectors
,”
EuroSun Conference
,
Palma de Mallorca, Spain
,
Oct.
, pp.
12
14
.
46.
McIntire
,
W. R.
,
1980
, “
Optimization of Stationary Nonimaging Reflectors for Tubular Evacuated Receivers Aligned North-South
,”
Sol. Energy
,
24
(
2
), pp.
169
175
. 10.1016/0038-092X(80)90390-4
47.
Suzuki
,
A.
, and
Kobayashi
,
S.
,
1995
, “
Yearly Distributed Insolation Model and Optimum Design of a Two Dimensional Compound Parabolic Concentrator
,”
Sol. Energy
,
54
(
5
), pp.
327
331
. 10.1016/0038-092X(95)00003-A
48.
Muschaweck
,
J.
,
Spirkl
,
W.
,
Timinger
,
A.
,
Benz
,
N.
,
Dörfler
,
M.
,
Gut
,
M.
, and
Kose
,
E.
,
2000
, “
Optimized Reflectors for Non-Tracking Solar Collectors With Tubular Absorbers
,”
Sol. Energy
,
68
(
2
), pp.
151
159
. 10.1016/S0038-092X(99)00066-3
49.
Brandemuehl
,
M. J.
, and
Beckman
,
W. A.
,
1980
, “
Transmission of Diffuse Radiation Through CPC and Flat Plate Collector Glazings
,”
Sol. Energy
,
24
(
5
), pp.
511
513
. 10.1016/0038-092X(80)90320-5
50.
Pedrotti
,
F. L.
,
Pedrotti
,
L. S.
, and
P
,
L. M.
,
1993
,
Introduction to Optics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
51.
Gillich
,
V.
,
1998
,
Aluminum Reflector With a Composite Reflectivity-Enhancing Surface Layer
, US Patent 5760981.
52.
Gillich
,
V.
,
1999
,
Aluminium Reflector with Composite Reflectivity-Enhancing Surface Layer
, US Patent 6,067,189.
53.
Dowell
,
A. J.
,
2012
,
High Reflectance Temperature Resistant Aluminium Based Mirror Reflectors, European Patent 2530496 A1
.
54.
Dasbach
,
R.
,
2015
,
Optically Active Multilayer System for Solar Absorption, European Patent 2499439 B1
.
55.
Blickensderfer
,
R.
,
Deardorff
,
D. K.
, and
Lincoln
,
R. L.
,
1978
,
Spectrally Selective Solar Absorbers
, US Patent 4 098 956.
56.
Lambda Research Corporation
,
2020
,
TracePro User's Manual
,
Littleton, MA
.
57.
Dowell
,
A.
,
2012
,
A Method of Making a Temperature Resistant Highly Reflective Aluminium Based Surface for Solar Reflector Applications and Reflector Parts made Thereof
,
European Patent 2418521 A2
.
58.
Lazarov
,
M. P.
,
Röhle
,
B.
,
Eisenhammer
,
T.
, and
Sizmann
,
R.
,
1991
, “
TiNxOy-Cu Coatings for Low-Emissive Solar-Selective Absorbers
,”
Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X
,
San Diego, CA
,
Dec. 1
, pp.
183
191
.
59.
Lazarov
,
M. P.
,
Brunotte
,
A.
,
Eisenhammer
,
T.
,
Sizmann
,
R.
,
Graf
,
W.
, and
Wittwer
,
V.
,
1992
, “
Effects of Roughness on TiNxOy-Cu Selective Absorbers
,”
Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XI: Selective Materials, Concentrators and Reflectors, Transparent Insulation and Superwindows
,
Toulouse-Labege, France
,
Nov. 25
, pp.
34
45
.
60.
Lazarov
,
M. P.
,
Sizmann
,
R.
, and
Frei
,
U.
,
1993
, “
Optimization of SiO2-TiNxOy-Cu Interference Absorbers: Numerical and Experimental Results
,”
Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XII
,
San Diego, CA
,
Oct. 22
, pp.
345
356
.
61.
Lazarov
,
M.
,
Raths
,
P.
,
Metzger
,
H.
, and
Spirkl
,
W.
,
1995
, “
Optical Constants and Film Density of TiNxOy Solar Selective Absorbers
,”
J. Appl. Phys.
,
77
(
5
), pp.
2133
2137
. 10.1063/1.358790
62.
Schellinger
,
H.
,
Lazarov
,
M. P.
,
Klank
,
H.
, and
Sizmann
,
R.
,
1993
, “
Thermal and Chemical Metallic-Dielectric Transitions of TiNxOy-Cu Absorber Tandems
,”
Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XII
,
San Diego, CA
,
Oct. 22
, pp.
366
376
.
63.
Lazarov
,
M. P.
, 1995, Material of Chemical Compounds With a Metal in Group IV A of the Periodic System, Nitrogen and Oxygen and Process for Producing It, Isabella Veronika Mayer: German.
64.
Ghosh
,
G.
,
1999
, “
Dispersion-Equation Coefficients for the Refractive Index and Birefringence of Calcite and Quartz Crystals
,”
Opt. Commun.
,
163
(
1–3
), pp.
95
102
. 10.1016/S0030-4018(99)00091-7
65.
DeVore
,
J. R.
,
1951
, “
Refractive Indices of Rutile and Sphalerite
,”
JOSA
,
41
(
6
), pp.
416
419
. 10.1364/JOSA.41.000416
66.
Valkonen
,
E.
,
Ribbing
,
C.-G.
, and
Sundgren
,
J.-E.
,
1986
, “
Optical Constants of Thin TiN Films: Thickness and Preparation Effects
,”
Appl. Opt.
,
25
(
20
), pp.
3624
3630
. 10.1364/AO.25.003624
67.
Rakić
,
A. D.
,
1995
, “
Algorithm for the Determination of Intrinsic Optical Constants of Metal Films: Application to Aluminum
,”
Appl. Opt.
,
34
(
22
), pp.
4755
4767
. 10.1364/AO.34.004755
68.
ASTM
,
2003
,
G173 Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface
, pp.
1
21
.
You do not currently have access to this content.