The performance of photovoltaic (PV) systems is highly influenced by the tilt angle of PV modules and the incidence of global solar irradiance, which may change the solar to electrical conversion efficiency. Some authors have addressed these uncertainties arising from PV solar generation by using mechanisms and methods in which solar tracking systems are integrated to PV systems. Since the advent of the internet of things (IoT), this solar tracking strategy has yet to meet the requirements of scalable distributed power systems that can seamlessly support the PV solar generation, mainly for remote monitoring and control. In this context, this paper aims at developing a prospective study devoted to examine fundamental concepts to implement solar tracking algorithms based on local solar time by using embedded technology from the IoT platform. Preliminary results evidenced an improvement of up to 38% in power generation performance for algorithm-driven PV modules compared to fixed PV modules.

References

1.
Reno
,
M. J.
,
Hansen
,
C. W.
, and
Setin
,
J. S.
,
2012
, “
Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2012-2389
.
2.
Perez
,
R.
, Beauharnois, M., Hemker, K., Jr., Kivalov, S., Lorenz, E., Pelland, S., Schlemmer, J., and Knowe, G. V.,
2011
, “
Evaluation of Numerical Weather Prediction Solar Irradiance Forecasts in the US
,”
ASES Annual Conference
, Raleigh, NC, May 17–20, pp. 1–8.
3.
Ehnberg
,
J. S. G.
, and
Bollen
,
M. H. J.
,
2005
, “
Simulation of Global Solar Radiation Based on Cloud Observations
,”
Sol. Energy
,
78
(
2
), pp.
157
162
.
4.
Loschi
,
H. J.
,
2017
, “
Proposal of a Global Solar Irradiance Prediction Complementary Method for Short-Term, Based on Markov Processes
,” Master's thesis, State University of Campinas, Campinas, Brazil.
5.
Lawrence
,
E. J.
,
2014
,
Renewable Energy Integration: Practical Management of Variability, Uncertainty, and Flexibility in Power Grids
,
Elsevier
, San Diego, CA.
6.
El Chaar
,
L.
,
Lamont
,
L. A.
, and
El Zein
,
N.
,
2011
, “
Review of Photovoltaic Technologies
,”
Renewable Sustainable Energy Rev.
,
15
(
5
), pp.
2165
2175
.
7.
Balijepalli
,
V. S. K. M.
, Pradhan, V., Khaparde, S. A., and Shereef, R. M.,
2011
, “
Review of Demand Response Under Smart Grid Paradigm
,” IEEE PES International Conference on Innovative Smart Grid Technologies-India (
ISGT India
2011), Kerala, India, Dec. 1–3, pp.
236
243
.
8.
Kadir
,
M. Z. A. A.
, and
Rafeeu
,
Y.
,
2010
, “
A Review on Factors for Maximizing Solar Fraction Under Wet Climate Environment in Malaysia
,”
Renewable Sustainable Energy Rev.
,
14
(
8
), pp.
2243
2248
.
9.
Mousazade
,
H.
, Keyhani, A., Javadi, A., Mobli, H., Abrinia, K., and Sharifi, A.,
2009
, “
A Review of Principle and Sun-Tracking Methods for Maximizing Solar Systems Output
,”
Renewable Sustainable Energy Rev.
,
13
(
8
), pp.
1800
1818
.
10.
Loschi
,
H. J.
, Iano, Y., León, J., Moretti, A., Conte, F. D., and Braga, H.,
2015
, “
A Review on Photovoltaic Systems: Mechanisms and Methods for Irradiation Tracking and Prediction
,”
Smart Grid Renewable Energy
,
6
(
7
), pp.
187
208
.
11.
He
,
T.
, Wu, J., Wu, X. H., Zhong, M., and You, J.,
2013
, “
A Research on the Positioning and Tracking Technology of the Mobile Device for Testing the Thermal Performance of Solar Collector
,”
Appl. Mech. Mater.
,
456
, pp.
184
188
.
12.
Loschi
,
H. J.
,
Ferrarezi
,
R.
, and
Rocha
,
N.
,
2014
, “
Solar Tracking System Installed With Photovoltaic (PV) Panels to Connection Grid Tie Low Voltage (Sunflower)
,”
Energy Power
,
4
(
3
), pp. 49–53.
13.
Prinsloo
,
G.
, and
Dobson
,
R.
,
2014
,
Solar Tracking: High Precision Solar Position Algorithms, Programs, Software and Source-Code for Computing the Solar Vector, Solar Coordinates & Sun Angles in Microprocessor, PLC, Arduino, PIC and PC-Based Sun Tracking Devices or Dynamic Sun Following Hardware
, SolarBooks, Stellenbosch, South Africa.
14.
Yilmaz
,
S.
, Riza Ozcalik, H., Dogmus, O., Dincer, F., Akgol, O., and Karaaslan, M.,
2015
, “
Design of Two Axes Sun Tracking Controller With Analytically Solar Radiation Calculations
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
997
1005
.
15.
Cheng
,
H. Y.
, and
Yu
,
C. C.
,
2016
, “
Solar Irradiance Now-Casting With Ramp-Down Event Prediction Via Enhanced Cloud Detection and Tracking
,” IEEE International Conference on Multimedia and Expo (
ICME
), Seattle, WA, July 11–15, pp.
1
6
.
16.
Loschi
,
H. J.
, León, J., Iano, Y., Ruppert, E., Conte, F. D., and Lustosa, T. C.,
2015
, “
Energy Efficiency in Smart Grid: A Prospective Study on Energy Management Systems
,”
Smart Grid Renewable Energy
,
6
(
8
), pp.
250
259
.
17.
Achleitner
,
S.
, Kamthe, A., Liu, T., and Cerpa, A. E.,
2014
, “
SIPS: Solar Irradiance Prediction System
,” 13th International Symposium on Information Processing in Sensor Networks (
IPSN-14
), Berlin, Apr. 15–17, pp.
225
236
.
18.
Kurniawan
,
A.
,
2015
,
Raspberry Pi Wireless Networks
, 1st ed., PE Press, Berlin.
19.
Edwards
,
C.
,
2013
, “
Not-So-Humble Raspberry Pi Gets Big Ideas
,”
Eng. Technol.
,
8
(
3
), pp.
30
33
.
20.
ABNT
,
1988
, “
Forças devidas ao vento em edificações
,” ABNT, Brazil, No. ABNT NBR 6123.
You do not currently have access to this content.