Natural dye extract of the saffron petal, purified by solid-phase extraction (SPE) technique, has been studied as a novel sensitizing dye to fabricate TiO2 nanoparticles-based dye-sensitized solar cells (DSSC). The extract was characterized using ultraviolet–visible (UV–Vis) and Fourier transform infrared (FTIR) spectroscopies to confirm the presence of anthocyanins in saffron petals. The typical current–voltage and the incident photon to current efficiency (IPCE) curves were also provided for the fabricated cell. The saffron petal extract exhibited an open-circuit voltage (Voc) of 0.397 V, short circuit current density (Jsc) of 2.32 mA/cm2, fill factor (FF) of 0.71, and conversion efficiency of 0.66%, which are fairly good in comparison with the other similar natural dye-sensitized solar cells. These are mainly due to the improved charge transfer between the dye extract of saffron petal and the TiO2 anode surface. Considering these results, it can be concluded that the use of saffron petal dye as a sensitizer in DSSC is a promising method for providing clean energy from performance, environmental friendliness, and cost points of view.

References

1.
Grätzel
,
M.
,
2003
, “
Dye-Sensitized Solar Cells
,”
J. Photochem. Photobiol. C
,
4
(
2
), pp.
145
153
.
2.
O'Regan
,
B.
, and
Gratzel
,
M.
, 1991 “
A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films
,”
Nature
,
353
(
6346
), pp.
737
40
.
3.
Grätzel
,
M.
,
2006
, “
The Advent of Mesoscopic Injection Solar Cells
,”
Prog. Photovoltaics: Res. Appl.
,
14
(
5
), pp.
429
442
.
4.
Raga
,
S. R.
, and
Fabregat-Santiago
,
F.
,
2013
, “
Temperature Effects in Dye-Sensitized Solar Cells
,”
Phys. Chem. Chem. Phys.
,
15
(
7
), pp.
2328
2336
.
5.
Kim
,
H.-J.
, and
Kim
,
D.-E.
,
2012
, “
Effect of Surface Roughness of Top Cover Layer on the Efficiency of Dye-Sensitized Solar Cell
,”
Sol. Energy
,
86
(
7
), pp.
2049
2055
.
6.
Hara
,
K.
, and
Arakawa
,
H.
,
2010
, “
Dye-Sensitized Solar Cells
,”
Handbook of Photovoltaic Science and Engineering
,
A.
Luque
, ed.,
Wiley
,
New York
.
7.
Singh
,
V. K.
, and
Giribabu
,
L.
,
2013
, “
Photovoltaic-A Review of the Solar Cell Generation
,”
J. Innov. Electron. Commun.
,
3
(
1
), pp. 46–55.
8.
Narayan
,
M. R.
,
2012
, “
Review: Dye Sensitized Solar Cells Based on Natural Photosensitizers
,”
Renewable Sustainable Energy Rev.
,
16
(
1
), pp.
208
215
.
9.
Hao
,
S.
,
Wu
,
J.
,
Huang
,
Y.
, and
Lin
,
J.
,
2006
, “
Natural Dyes as Photosensitizers for Dye-Sensitized Solar Cell
,”
Sol. Energy
,
80
(
2
), pp.
209
214
.
10.
Tennakone
,
K.
,
Kumarasinghe
,
A. R.
,
Kumara
,
G. R. R. A.
,
Wijayantha
,
K. G. U.
, and
Sirimanne
,
P. M.
,
1997
, “
Nanoporous TiO2 Photoanode Sensitized With the Flower Pigment Cyanidin
,”
J. Photochem. Photobiol. A: Chem.
,
108
(
2–3
), pp.
193
195
.
11.
Smestad
,
G. P.
,
1998
, “
Education and Solar Conversion: Demonstrating Electron Transfer
,”
Sol. Energy Mater. Sol. Cells
,
55
(
1–2
), pp.
157
178
.
12.
Dai
,
Q.
, and
Rabani
,
J.
,
2002
, “
Photosensitization of Nanocrystalline TiO2 Films by Anthocyanin Dyes
,”
J. Photochem. Photobiol. A: Chem.
,
148
(
1
), pp.
17
24
.
13.
Ito
,
S.
,
Saitou
,
T.
,
Imahori
,
H.
,
Uehara
,
H.
, and
Hasegawa
,
N.
,
2010
, “
Fabrication of Dye-Sensitized Solar Cells Using Natural Dye for Food Pigment: Monascus Yellow
,”
Energy Environ. Sci.
,
3
(
7
), pp.
905
909
.
14.
Sakata
,
K.
,
Saito
,
N.
, and
Honda
,
T.
,
2006
, “
Ab Initio Study of Molecular Structures and Excited States in Anthocyanidins
,”
Tetrahedron
,
62
(
15
), pp.
3721
3731
.
15.
Calogero
,
G.
,
Di Marco
,
G.
,
Cazzanti
,
S.
,
Caramori
,
S.
,
Argazzi
,
R.
,
Di Carlo
,
A.
, and
Bignozzi
,
C. A.
,
2010
, “
Efficient Dye-Sensitized Solar Cells Using Red Turnip and Purple Wild Sicilian Prickly Pear Fruits
,”
Int. J. Mol. Sci.
,
11
(
1
), pp.
254
267
.
16.
Calogero
,
G.
,
Citro
,
I.
,
Di Marco
,
G.
,
Minicante
,
S. A.
,
Morabito
,
M.
, and
Genovese
,
G.
,
2014
, “
Brown Seaweed Pigment as a Dye Source for Photoelectrochemical Solar Cells
,”
Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
,
117
, pp.
702
706
.
17.
Chien
,
C.-Y.
, and
Hsu
,
B.-D.
,
2013
, “
Optimization of the Dye-Sensitized Solar Cell With Anthocyanin as Photosensitizer
,”
Sol. Energy
,
98
, pp.
203
211
.
18.
Konczak
,
I.
, and
Zhang
,
W.
,
2004
, “
Anthocyanins—More Than Nature's Colours
,”
BioMed Res. Int.
,
2004
(
5
), pp.
239
240
.
19.
Bkowska-Barczak
,
A.
,
2005
, “
Acylated Anthocyanins as Stable Natural Food Colorants–A Review
,”
Pol. J. Food Nutr. Sci.
,
142
(
2
), pp.
107
116
.
20.
Castañeda-Ovando
,
A.
,
Sedo
,
O.
,
Havel
,
J.
,
Pacheco
,
L.
,
Galán-Vidal
,
C. A.
, and
Contreras López
,
E.
,
2012
, “
Identification of Anthocyanins in Red Grape, Plum and Capulin by MALDI-ToF MS
,”
J. Mex. Chem. Soc.
,
56
(
4
), pp.
378
383
.
21.
Fleschhut
,
J.
,
Kratzer
,
F.
,
Rechkemmer
,
G.
, and
Kulling
,
S. E.
,
2006
, “
Stability and Biotransformation of Various Dietary Anthocyanins In Vitro
,”
Eur. J. Nutr.
,
45
(
1
), pp.
7
18
.
22.
Cherepy
,
N. J.
,
Smestad
,
G. P.
,
Grätzel
,
M.
, and
Zhang
,
J. Z.
,
1997
, “
Ultrafast Electron Injection: Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode
,”
J. Phys. Chem. B.
,
101
(
45
), pp.
9342
9351
.
23.
Brouillard
,
R.
,
1982
,
Chemical Structure of Anthocyanins
,
Academic Press
,
New York
.
24.
Mazza
,
G.
, and
Brouillard
,
R.
,
1987
, “
Color Stability and Structural Transformations of Cyanidin 3, 5-Diglucoside and Four 3-Deoxyanthocyanins in Aqueous Solutions
,”
J. Agric. Food Chem.
,
35
(
3
), pp.
422
426
.
25.
Khazaei
,
K. M.
,
Jafari
,
S.
,
Ghorbani
,
M.
,
Kakhki
,
A. H.
, and
Sarfarazi
,
M.
,
2015
, “
Optimization of Anthocyanin Extraction From Saffron Petals With Response Surface Methodology
,”
Food Anal. Methods
,
9
(
7
), pp.
1
9
.
26.
Iran SCO
,
2014
, “
Iran's Agricultural Statistics
,” Statistical Center of Iran, Tehran, Iran.
27.
Ghorbani
,
M.
,
2008
, “
The Efficiency of Saffron's Marketing Channel in Iran
,”
World Appl. Sci. J.
,
4
(
4
), pp.
523
527
.
28.
Wrolstad
,
R. E.
,
Acree
,
T. E.
,
Decker
,
E. A.
,
Penner
,
M. H.
,
Reid
,
D. S.
,
Schwartz
,
S. J.
, Shoemaker, C. F., Smith, D., and Sporns, P.,
2005
, “
Anthocyanins
,”
Handbook of Food Analytical Chemistry
,
Wiley
,
New York
, pp.
5
69
.
29.
Mozaffari
,
S. A.
,
Saeidi
,
M.
, and
Rahmanian
,
R.
,
2015
, “
Photoelectric Characterization of Fabricated Dye-Sensitized Solar Cell Using Dye Extracted From Red Siahkooti Fruit as Natural Sensitizer
,”
Spectrochim. Acta Part A
,
142
, pp.
226
231
.
30.
Hungria
,
M.
,
Joseph
,
C. M.
, and
Phillips
,
D. A.
,
1991
, “
Anthocyanidins and Flavonols, Major NOD Gene Inducers From Seeds of a Black-Seeded Common Bean (Phaseolus vulgaris L.)
,”
Plant Physiol.
,
97
(
2
), pp.
751
758
.
31.
Xu
,
W.
,
Peng
,
B.
,
Chen
,
J.
,
Liang
,
M.
, and
Cai
,
F.
,
2008
, “
New Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells
,”
J. Phys. Chem. C.
,
112
(
3
), pp.
874
880
.
32.
Selimovic
,
V.
,
2014
, “
Determining the Optical Properties of Secondary Organic Aerosols Using UV-Vis Spectroscopy
,”
Concordia University
, Portland, OR.
33.
Pavia
,
D.
,
Lampman
,
G.
,
Kriz
,
G.
, and
Vyvyan
,
J.
,
2008
, Introduction to Spectroscopy, Cengage Learning, Bellingham, WA.
34.
Calogero
,
G.
,
Bartolotta
,
A.
,
Di Marco
,
G.
,
Di Carlo
,
A.
, and
Bonaccorso
,
F.
,
2015
, “
Vegetable-Based Dye-Sensitized Solar Cells
,”
Chem. Soc. Rev.
,
44
(
10
), pp.
3244
3294
.
35.
Wongcharee
,
K.
,
Meeyoo
,
V.
, and
Chavadej
,
S.
,
2007
, “
Dye-Sensitized Solar Cell Using Natural Dyes Extracted From Rosella and Blue Pea Flowers
,”
Sol. Energy Mater. Sol. Cells
,
91
(
7
), pp.
566
571
.
36.
Luo
,
P.
,
Niu
,
H.
,
Zheng
,
G.
,
Bai
,
X.
,
Zhang
,
M.
, and
Wang
,
W.
,
2009
, “
From Salmon Pink to Blue Natural Sensitizers for Solar Cells: Canna indica L., Salvia Splendens, Cowberry and Solanum nigrum L
,”
Spectrochim. Acta Part A
,
74
(
4
), pp.
936
942
.
37.
Maurya
,
I. C.
,
Srivastava
,
P.
, and
Bahadur
,
L.
,
2016
, “
Dye-Sensitized Solar Cell Using Extract From Petals of Male Flowers Luffa cylindrica L. as a Natural Sensitizer
,”
Opt. Mater.
,
52
, pp.
150
156
.
38.
Hamadanian
,
M.
,
Safaei-Ghomi
,
J.
,
Hosseinpour
,
M.
,
Masoomi
,
R.
, and
Jabbari
,
V.
,
2014
, “
Uses of New Natural Dye Photosensitizers in Fabrication of High Potential Dye-Sensitized Solar Cells (DSSCs)
,”
Mater. Sci. Semiconductor Process.
,
27
, pp.
733
739
.
39.
Cho
,
K.-C.
,
Chang
,
H.
,
Chen
,
C.-H.
,
Kao
,
M.-J.
, and
Lai
,
X.-R.
,
2014
, “
A Study of Mixed Vegetable Dyes With Different Extraction Concentrations for Use as a Sensitizer for Dye-Sensitized Solar Cells
,”
Int. J. Photoenergy
,
2014
, pp.
1
5
.
40.
Chang
,
H.
, and
Lo
,
Y.-J.
,
2010
, “
Pomegranate Leaves and Mulberry Fruit as Natural Sensitizers for Dye-Sensitized Solar Cells
,”
Sol. Energy
,
84
(
10
), pp.
1833
1837
.
41.
Calogero
,
G.
, and
Di Marco
,
G.
,
2008
, “
Red Sicilian Orange and Purple Eggplant Fruits as Natural Sensitizers for Dye-Sensitized Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
92
(
11
), pp.
1341
1346
.
42.
Calogero
,
G.
,
Yum
,
J.-H.
,
Sinopoli
,
A.
,
Di Marco
,
G.
,
Grätzel
,
M.
, and
Nazeeruddin
,
M. K.
,
2012
, “
Anthocyanins and Betalains as Light-Harvesting Pigments for Dye-Sensitized Solar Cells
,”
Sol. Energy
,
86
(
5
), pp.
1563
1575
.
43.
Zhang
,
D.
,
Yamamoto
,
N.
,
Yoshida
,
T.
, and
Minoura
,
H.
,
2002
, “
Natural Dye Sensitized Solar Cells
,”
Trans. Mater. Res. Soc. Jpn.
,
27
(
4
), pp.
811
814
.
44.
Jin
,
E. M.
,
Park
,
K.-H.
,
Jin
,
B.
,
Yun
,
J.-J.
, and
Gu
,
H.-B.
,
2010
, “
Photosensitization of Nanoporous TiO2 Films With Natural Dye
,”
Phys. Scr.
,
2010
(
T139
), p.
014006
.
45.
Chang
,
H.
,
Kao
,
M.-J.
,
Chen
,
T.-L.
,
Kuo
,
C.-G.
,
Cho
,
K.-C.
, and
Lin
,
X.-P.
,
2011
, “
Natural Sensitizer for Dye-Sensitized Solar Cells Using Three Layers of Photoelectrode Thin Films With a Schottky Barrier
,”
Am. J. Eng. Appl. Sci.
,
4
(
2
), pp. 13–22.
46.
Zhou
,
H.
,
Wu
,
L.
,
Gao
,
Y.
, and
Ma
,
T.
,
2011
, “
Dye-Sensitized Solar Cells Using 20 Natural Dyes as Sensitizers
,”
J. Photochem. Photobiol. A: Chem.
,
219
(
2
), pp.
188
194
.
47.
Sun
,
S.-S.
, and
Dalton
,
R. L.
,
2008
, “
Organic Molecular Light-Emitting Materials and Devices
,”
Introduction to Organic Electronic and Optoelectronic Materials and Devices
,
CRC Press
, New York.
48.
Moser
,
J.
,
Punchihewa
,
S.
,
Infelta
,
P. P.
, and
Graetzel
,
M.
,
1991
, “
Surface Complexation of Colloidal Semiconductors Strongly Enhances Interfacial Electron-Transfer Rates
,”
Langmuir
,
7
(
12
), pp.
3012
3018
.
49.
Connor
,
P. A.
,
Dobson
,
K. D.
, and
McQuillan
,
A. J.
,
1995
, “
New Sol-Gel Attenuated Total Reflection Infrared Spectroscopic Method for Analysis of Adsorption at Metal Oxide Surfaces in Aqueous Solutions, Chelation of TiO2, ZrO2, and Al2O3 Surfaces by Catechol, 8-Quinolinol, and Acetylacetone
,”
Langmuir
,
11
(
11
), pp.
4193
4195
.
You do not currently have access to this content.