This paper presents an analytical model and an experimental study of adhesion and fluid shear removal of calcium carbonate scale on polypropylene and copper tubes in laminar and turbulent water flows, with a view toward understanding how scale can be controlled in solar absorbers and heat exchangers. The tubes are first coated with scale and then inserted in a flow-through apparatus. Removal is measured gravimetrically for Reynolds numbers from 525 to 5550, corresponding to wall shear stresses from 0.16 Pa to 6.0 Pa. The evolutionary structure of the scale is visualized with scanning electron microscopy. Consistent with the predictive model, calcium carbonate is more easily removed from polypropylene than copper. In a laminar flow with a wall shear stress of 0.16 Pa, 65% of the scale is removed from polypropylene while only 10% is removed from copper. Appreciable removal of scale from copper requires higher shear stresses. At Reynolds number of 5500, corresponding to a wall shear stress of 6.0 Pa, 30% of the scale is removed from the copper tubes. The results indicate scale will be more easily removed from polypropylene, and by inference other polymeric materials, than from copper by flushing with water.

1.
Burch
,
J.
,
Egrican
,
N.
, and
Carlisle
,
N.
, 1990, “
Calcium Carbonate Scaling in Solar Domestic Hot Water Systems
,”
Proceedings of the Annual American Solar Energy Society Conference
, Austin, TX, pp.
262
266
.
2.
Baker
,
D.
, and
Vliet
,
G.
, 2001, “
Designing Solar Hot Water Systems for Scaling Environments
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
(
1
), pp.
43
47
.
3.
Baker
,
D.
, and
Vliet
,
G.
, 2003, “
Identifying and Reducing Scaling Problems in Solar Hot Water Systems
,”
ASME J. Sol. Energy Eng.
0199-6231,
125
(
1
), pp.
61
66
.
4.
Harrison
,
S. J.
, 2005, “
Passive Heat Exchanger Anti-Fouling For Solar DHW Systems
,”
Presented at the ASME International Solar Energy Conference
, Orlando, FL, Aug. 6–12, Paper No. ISEC2005-76232, pp.
403
407
.
5.
Wang
,
Y.
,
Davidson
,
J.
, and
Francis
,
L.
, 2005, “
Scaling in Polymer Tubes and Interpretation for Use in Solar Water Heating Systems
,”
ASME J. Sol. Energy Eng.
0199-6231,
127
, pp.
3
14
.
6.
Sanft
,
P.
,
Francis
,
L.
, and
Davidson
,
J. H.
, 2006, “
Calcium Carbonate Formation on Cross-Linked Polyethylene (PEX) and Polypropylene Random Copolymer (PP-r)
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
(
2
), pp.
251
254
.
7.
Wu
,
Z.
,
Francis
,
L. F.
, and
Davidson
,
J. H.
, 2009, “
Scale Formation on Polypropylene and Copper Tubes in Mildly Supersaturated Potable Water
,”
Sol. Energy
0038-092X,
83
, pp.
636
645
.
8.
Wu
,
Z.
, 2008, “
Scale Formation on Polypropylene and Copper Tubes
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
9.
Snoeyink
,
V. L.
, and
Jenkins
,
D.
, 1980,
Water Chemistry
,
Wiley
,
New York
.
10.
Stumm
,
W.
, and
Morgan
,
J. J.
, 1996,
Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters
,
Wiley
,
New York
, pp.
760
817
.
11.
Wang
,
Z.
,
Neville
,
A.
, and
Meredith
,
A. W.
, 2005, “
How and Why Does Scale Stick—Can the Surface be Engineered to Decrease Scale Formation and Adhesion?
,”
SPE International Symposium on Oilfield Scale
, Aberdeen, UK, pp.
1
8
.
12.
Tianquing
,
L.
,
Yuwen
,
S.
, and
Xinghai
,
W.
, 1999, “
Formation and Removal Processes of CaCO3 Fouling
,”
Proceedings of an International Conference on Mitigation of Heat Exchanger Fouling and Its Economical and Environmental Implications
, Banff, Alberta, Canada, pp.
262
269
.
13.
Loo
,
C. E.
, and
Bridgwater
,
J.
, 1985, “
Theory of Thermal Stresses and Deposit Removal
,”
Powder Technol.
0032-5910,
42
, pp.
55
65
.
14.
Bohnet
,
M.
,
Augustin
,
W.
, and
Hirsch
,
H.
, 1997,
Influence of Fouling Layer Shear Strength on Removal Behavior
,
United Engineering Foundation and Begell House
,
New York
, pp.
201
208
.
15.
Bohnet
,
M.
, 1987, “
Fouling of Heat Transfer Surfaces
,”
Chem. Eng. Technol.
0930-7516,
10
, pp.
113
125
.
16.
Yiantsios
,
S. G.
, and
Karabelas
,
A. J.
, 1994, “
Fouling of Tube Surfaces: Modeling of Removal Kinetics
,”
AIChE J.
0001-1541,
40
, pp.
1804
1813
.
17.
Yiantsios
,
S. G.
, and
Karabelas
,
A. J.
, 1995, “
Detachment of Spherical Microparticles Adhering on Flat Surfaces by Hydrodynamic Forces
,”
J. Colloid Interface Sci.
0021-9797,
176
, pp.
74
85
.
18.
Ahmadi
,
G.
, and
Zhang
,
H.
, 2005, “
Removal of Particle Pairs From a Plane Surface
,”
J. Adhes.
0021-8464,
81
, pp.
189
212
.
19.
Ahmadi
,
G.
,
Guo
,
S.
, and
Busnaina
,
A. A.
, 2007, “
Particle Adhesion and Detachment in Turbulent Flows Including Capillary Force
,”
Part. Sci. Technol.
0272-6351,
25
, pp.
59
76
.
20.
Chang
,
K.
, and
Hammer
,
D. A.
, 1996, “
Influence of Direction and Type of Applied Force on the Detachment of Macromolecularly-Bound Particles From Surfaces
,”
Langmuir
0743-7463,
12
, pp.
2271
2282
.
21.
Soltani
,
M.
, and
Ahmadi
,
G.
, 1994, “
On Particle Adhesion and Removal Mechanisms in Turbulent Flows
,”
J. Adhes.
0021-8464,
8
, pp.
763
785
.
22.
Ziskind
,
G.
,
Fichman
,
M.
, and
Gutfinger
,
C.
, 1995, “
Resuspension of Particulates From Surfaces to Turbulent Flows—Review and Analysis
,”
J. Aerosol Sci.
0021-8502,
26
, pp.
613
644
.
23.
Taheri
,
M.
, and
Bragg
,
G. M.
, 1992, “
A Study of Particle Resuspension in a Turbulent Flow Using a Preston Tube
,”
Aerosol Sci. Technol.
0278-6826,
16
, pp.
15
20
.
24.
Burdick
,
G. M.
,
Berman
,
N. S.
, and
Beaudoin
,
S. P.
, 2005, “
Hydrodynamic Particle Removal From Surfaces
,”
Thin Solid Films
0040-6090,
488
, pp.
116
123
.
25.
Cooper
,
K.
,
Gupta
,
A.
, and
Beaudoin
,
S. P.
, 2001, “
Simulation of the Adhesion of Particles to Substrates
,”
J. Colloid Interface Sci.
0021-9797,
234
, pp.
284
292
.
26.
Mullins
,
M. E.
,
Michaels
,
L. P.
, and
Menon
,
V.
, 1992, “
Effect of Geometry on Particle Adhesion
,”
Aerosol Sci. Technol.
0278-6826,
17
, pp.
105
118
.
27.
Visser
,
J.
, 1995, “
Particle Adhesion and Removal: A Review
,”
Part. Sci. Technol.
0272-6351,
13
, pp.
169
196
.
28.
Busnaina
,
A.
,
Taylor
,
J.
, and
Schaeffer
,
D. M.
, 1993, “
Measurement of the Adhesion and Removal Forces of Submicrometer Particles on Silicon Substrates
,”
J. Adhes. Sci. Technol.
0169-4243,
7
, pp.
441
455
.
29.
Heimez
,
P. C.
, and
Rajagopala
,
R.
, 1997,
Principles of Colloid and Surface Chemistry
,
Taylor & Francis
,
Boca Raton, FL
, pp.
462
498
.
30.
Bargeman
,
L.
, and
van Voorst
,
V. F.
, 1972, “
Van Der Waals Force Between Immersed Particles
,”
J. Electroanal. Chem.
0022-0728,
37
, pp.
45
52
.
31.
Bergstrom
,
L.
, 1997, “
Hamaker Constants of Inorganic Materials
,”
Adv. Colloid Interface Sci.
0001-8686,
70
, pp.
125
169
.
32.
Kinloch
,
A. J.
, 1987,
Adhesion and Adhesives: Science and Technology
,
Chapman and Hall
,
London
, pp.
78
96
.
33.
Tolbot
,
J.
, 1998,
Corrosion Science and Technology
,
CRC
,
Boca Raton, FL
, pp.
43
67
.
34.
Van Oss
,
C. J.
,
Chaudhury
,
M. K.
, and
Good
,
R. J.
, 1988, “
Interfacial Lifshitz-Van Der Waals and Polar Interactions in Macroscopic Systems
,”
Chem. Rev. (Washington, D.C.)
0009-2665,
88
, pp.
927
941
.
35.
Janczuk
,
B.
,
Wojcik
,
W.
, and
Zdziennicka
,
A.
, 1993, “
Determination of Surface-Free Energy Components of Synthetic Chalcocite From Contact Angle Measurements
,”
Powder Technol.
0032-5910,
76
, pp.
223
239
.
36.
Wu
,
W.
,
Giese
,
R. F.
, and
Van Oss
,
C. J.
, 1996, “
Change in Surface Properties of Solids Caused by Grinding
,”
Powder Technol.
0032-5910,
89
, pp.
129
132
.
37.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
324
, pp.
301
313
.
38.
Ahmadi
,
G.
, and
Guo
,
S.
, 1998, “
Adhesion and Detachment of Bumpy Particle in Turbulent Flows—Effects of Electrostatic and Capillary Forces
,”
17th Annual Conference of the American Association for Aerosol Research, AAAR ’98
, Cincinnati, OH, (
June
), pp.
360
363
.
You do not currently have access to this content.