In the framework of the EU-project SOLZINC, a 300-kW solar chemical pilot plant for the production of zinc by carbothermic reduction of ZnO was experimentally demonstrated in a beam-down solar tower concentrating facility of Cassegrain optical configuration. The solar chemical reactor, featuring two cavities, of which the upper one is functioning as the solar absorber and the lower one as the reaction chamber containing a ZnO/C packed bed, was batch-operated in the 1300–1500 K range and yielded 50 kg/h of 95%-purity Zn. The measured energy conversion efficiency, i.e., the ratio of the reaction enthalpy change to the solar power input, was 30%. Zinc finds application as a fuel for Zn/air batteries and fuel cells, and can also react with water to form high-purity hydrogen. In either case, the chemical product is ZnO, which in turn is solar-recycled to Zn. The SOLZINC process provides an efficient thermochemical route for the storage and transportation of solar energy in the form of solar fuels.

1.
Steinfeld
,
A.
,
Kuhn
,
P.
,
Reller
,
A.
,
Palumbo
,
R.
,
Murray
,
J.
, and
Tamaura
,
Y.
, 1998, “
Solar-Processed Metals as Clean Energy Carriers and Water-Splitters
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
9
), pp.
767
774
.
2.
Bilgen
,
E.
,
Ducarroir
,
M.
,
Foex
,
M.
,
Sibieude
,
F.
, and
Trombe
,
F.
, 1977, “
Use of Solar Energy for Direct and Two Step Water Decomposition Cycles
,”
Int. J. Hydrogen Energy
0360-3199,
2
, pp.
251
257
.
3.
Berman
,
A.
, and
Epstein
,
M.
, 2000, “
The Kinetics of Hydrogen in the Oxidation of Liquid Zinc With Water Vapor
,”
Int. J. Hydrogen Energy
0360-3199,
25
, pp.
957
967
.
4.
Weiss
,
R.
,
Ly
,
H.
,
Wegner
,
K.
,
Pratsinis
,
S.
, and
Steinfeld
,
A.
, 2005, “
H2 Production by Zn Hydrolysis in a Hot-Wall Aerosol Reactor
,”
AIChE J.
0001-1541,
51
, pp.
1966
1970
.
5.
Wegner
,
K.
,
Ly
,
H.
,
Weiss
,
R.
,
Pratsinis
,
S.
, and
Steinfeld
,
A.
, 2006, “
In-situ Formation and Hydrolysis of Zn Nanoparticles for H2 Production by the 2-Step ZnO∕Zn Water-Splitting Thermochemical Cycle
,”
Int. J. Hydrogen Energy
0360-3199,
31
, pp.
55
61
.
6.
Steinfeld
,
A.
, 2005, “
Solar Thermochemical Production of Hydrogen—A Review
,”
Sol. Energy
0038-092X,
78
(
5
), pp.
603
615
.
7.
Perkins
,
C.
, and
Weimer
,
A. W.
, 2004, “
Likely Near-Term Solar-Thermal Water Splitting Technologies
,”
Int. J. Hydrogen Energy
0360-3199,
29
, pp.
1587
1599
.
8.
Palumbo
,
R.
,
Lede
,
J.
,
Boutin
,
O.
,
Elorza Ricart
,
E.
,
Steinfeld
,
A.
,
Möller
,
S.
,
Weidenkaff
,
A.
,
Fletcher
,
E. A.
, and
Bielicki
,
J.
, 1998, “
The Production of Zn From ZnO in a High-Temperature Solar Decomposition Quench Process—I. The Scientific Framework for the Process
,”
Chem. Eng. Sci.
0009-2509,
53
, pp.
2503
2517
.
9.
Müller
,
R.
,
Haeberling
,
P.
, and
Palumbo
,
R.
, 2006, “
Further Advances Toward the Development of a Direct Heating Solar Thermal Chemical Reactor for the Thermal Dissociation of ZnO(s)
,”
Sol. Energy
0038-092X,
80
(
5
), pp.
500
511
.
10.
Wieckert
,
C.
, and
Steinfeld
,
A.
, 2002, “
Solar Thermal Reduction of ZnO Using CH4:ZnO and C:ZnO Molar Ratios Less Than 1
,”
ASME J. Sol. Energy Eng.
0199-6231,
124
, pp.
55
62
.
11.
Gourtsoyannis
,
L.
, and
Davenport
,
W. G.
, 1979, “
Condensation of Zinc Vapour From Zinc Smelting Gases
,” Institution of Mining and Metallurgy,
C175
.
12.
Berman
,
A.
, and
Epstein
,
M.
, 1999, “
The Kinetic Model for Carboreduction of Zinc Oxide
,”
J. Phys. IV
1155-4339,
9
, pp.
319
324
.
13.
Murray
,
J. P.
,
Steinfeld
,
A.
, and
Fletcher
,
E. A.
, 1995, “
Metals, Nitrides, and Carbides via Solar Carbothermal Reduction of Metals Oxides
,”
Energy
0360-5442,
20
, pp.
695
704
.
14.
Adinberg
,
R.
, and
Epstein
,
M.
, 2004, “
Experimental Study of Solar Reactors for Carboreduction of Zinc Oxide
,”
Energy
0360-5442,
29
, pp.
757
769
.
15.
Osinga
,
T.
,
Frommherz
,
U.
,
Steinfeld
,
A.
, and
Wieckert
,
C.
, 2004, “
Experimental Investigation of the Solar Carbothermic Reduction of ZnO Using a Two-Cavity Solar Reactor
,”
ASME J. Sol. Energy Eng.
0199-6231,
126
, pp.
633
637
.
16.
Steinfeld
,
A.
,
Frei
,
A.
,
Kuhn
,
P.
, and
Wuillemin
,
D.
, 1995, “
Solarthermal Production of Zinc and Syngas Via Combined ZnO-Reduction and CH4-Reforming Processes
,”
Int. J. Hydrogen Energy
0360-3199,
20
(
10
), pp.
793
804
.
17.
Kräupl
,
S.
, and
Steinfeld
,
A.
, 2003, “
Operational Performance of a 5kW Solar Chemical Reactor for the Co-Production of Zinc and Syngas
,”
ASME J. Sol. Energy Eng.
0199-6231,
125
, pp.
124
126
.
18.
Wieckert
,
C.
,
Epstein
,
M.
,
Olalde
,
G.
,
Palumbo
,
R.
,
Pauling
,
H. J.
,
Reichhardt
,
H. U.
,
Robert
,
J. F
,
Santén
,
S.
, and
Steinfeld
,
A.
, 2002, “
The Solzinc-Project for Solar Carbothermic Production of Zn From ZnO
,”
Proc. 11th SolarPaces Int. Symposium Zurich
, pp.
239
245
.
19.
Wieckert
,
C.
,
Palumbo
,
R.
, and
Frommherz
,
U.
, 2004, “
A Two-Cavity Reactor for Solar Chemical Processes: Heat Transfer Model and Application to Carbothermic Reduction of ZnO
,”
Energy
0360-5442,
29
, pp.
771
787
.
20.
Kräupl
,
S.
,
Frommherz
,
U.
, and
Wieckert
,
C.
, 2006, “
Solar Carbothermic Reduction of ZnO in a Two-Cavity Reactor: Laboratory Experiments for a Reactor Scale-up
,”
ASME J. Sol. Energy Eng.
0199-6231,
128
, pp.
8
15
.
21.
Vishnevetsky
,
I.
,
Epstein
,
M.
, and
Rubin
,
R.
, 2005, “
Simulation of Thermal and Chemical Processes in Annular Layer of ZnO–C Mixtures
,”
ASME J. Sol. Energy Eng.
0199-6231,
127
, pp.
401
412
.
22.
Vishnevetsky
,
I.
,
Epstein
,
M.
,
Ben-Zvi
,
R.
, and
Rubin
,
R.
, 2006, “
Feasibility Study on Nonwindowed Solar Reactor: ZnO Carboreduction as an Example
,”
Sol. Energy
0038-092X,
80
(
10
), pp.
1363
1375
.
23.
Wieckert
,
C.
, 2005, “
Design Studies for a Solar Reactor Based on a Simple Radiative Heat Exchange Model
,”
ASME J. Sol. Energy Eng.
0199-6231,
127
, pp.
425
429
.
24.
Wieckert
,
C.
,
Meier
,
A.
, and
Steinfeld
,
A.
, 2003, “
Indirectly Irradiated Solar Receiver Reactors for High-Temperature Thermochemical Processes
,”
ASME J. Sol. Energy Eng.
0199-6231,
125
, pp.
120
123
.
25.
Z’Graggen
,
A.
, and
Steinfeld
,
A.
, 2004, “
Radiative Exchange Within a Two-Cavity Configuration With a Spectrally Selective Window
,”
ASME J. Sol. Energy Eng.
0199-6231,
126
, pp.
819
822
.
26.
Osinga
,
T.
,
Olalde
,
G.
, and
Steinfeld
,
A.
, 2004, “
Solar Carbothermical Reduction of ZnO: Shrinking Packed-Bed Reactor Modeling and Experimental Validation
,”
Ind. Eng. Chem. Res.
0888-5885,
43
, pp.
7981
7988
.
27.
Osinga
,
T.
, 2005, “
Heat and Mass Transfer in a Shrinking Packed Bed of Zinc Oxide and Charcoal Undergoing Solar Carbothermal Reduction
,” Ph.D. thesis, ETH Zürich.
28.
Yogev
,
A.
,
Kribus
,
A.
,
Epstein
,
M.
, and
Kogan
,
A.
, 1998, “
Solar “Tower Reflector” Systems: A New Approach for High-Temperature Solar Plants
,”
Int. J. Hydrogen Energy
0360-3199,
23
(
4
), pp.
239
245
.
29.
Meier
,
A.
,
Gremaud
,
N.
, and
Steinfeld
,
A.
, 2005, “
Economical Evaluation of the Industrial Solar Production of Lime
,”
Energy Convers. Manage.
0196-8904,
46
, pp.
905
926
.
You do not currently have access to this content.