A detailed three-dimensional computational fluid dynamics (CFD) analysis on gas-particle flow and heat transfer inside a solid-particle solar receiver, which utilizes free-falling particles for direct absorption of concentrated solar radiation, is presented. The two-way coupled Euler-Lagrange method is implemented and includes the exchange of heat and momentum between the gas phase and solid particles. A two-band discrete ordinate method is included to investigate radiation heat transfer within the particle cloud and between the cloud and the internal surfaces of the receiver. The direct illumination energy source that results from incident solar radiation was predicted by a solar load model using a solar ray-tracing algorithm. Two kinds of solid-particle receivers, each having a different exit condition for the solid particles, are modeled to evaluate the thermal performance of the receiver. Parametric studies, where the particle size and mass flow rate are varied, are made to determine the optimal operating conditions. The results also include detailed information for the gas velocity, temperature, particle solid volume fraction, particle outlet temperature, and cavity efficiency.

1.
Steinfeld
,
A.
,
Imhof
,
A.
, and
Mischler
,
D.
, 1992, “
Experimental Investigation of an Atmospheric-Open Cyclone Solar Reactor for Solid-Gas Thermochemical Reactions
,”
ASME J. Sol. Energy Eng.
0199-6231,
114
, pp.
171
174
.
2.
Steinfeld
,
A.
,
Frei
,
A.
,
Kuhn
,
P.
, and
Wuillemin
,
D.
, 1995, “
Solar Thermal Production of Zinc and Syngas Via Combined Zno-Reduction and CH4-Reforming Processes
,”
Int. J. Hydrogen Energy
0360-3199,
20
, pp.
793
804
.
3.
Hirsch
,
D.
, and
Steinfeld
,
A.
, 2004, “
Radiative Transfer in a Solar Chemical Reactor for the Co-Production of Hydrogen and Carbon by Thermal Decomposition of Methane
,”
Chem. Eng. Sci.
0009-2509,
59
, pp.
5771
5778
.
4.
Haueter
,
P.
,
Moeller
,
S.
,
Palumbo
,
R.
, and
Steinfeld
,
A.
, 1999. “
The Production Of Zinc by Thermal Dissociation Of Zinc Oxide Solar Chemical Reactor Design
,”
Sol. Energy
0038-092X,
67
, pp.
161
167
.
5.
Abdelrahman
,
P.
,
Fumeaux
,
P.
, and
Suter
,
P.
, 1979, “
Study Of Solid-Gas Suspension Used for Direct Absorption of Concentrated Solar Radiation
,”
Sol. Energy
0038-092X,
22
, pp.
45
48
.
6.
Hunt
,
A. J.
, 1979, “
A New Solar Receiver Utilizing a Small Particle Heat Exchanger
,”
Proceedings of the 14th International Society of Energy Conversion Engineering Conference
,
IEEE
, New York, pp.
159
163
.
7.
Hunt
,
A. J.
, and
Brown
,
C. T.
, 1982, “
Solar Testing of the Small Particle Heat Exchanger (SPHER)
,”
Lawrence Berkeley National Laboratory
, Report No. LBL-16497.
8.
Meier
,
A.
,
Ganz
,
J.
, and
Steinfeld
,
A.
, 1996, “
Modeling of a Novel High-Temperature Solar Chemical Reactor
,”
Chem. Eng. Sci.
0009-2509,
51
, pp.
3181
3186
.
9.
Hruby
,
J. M.
, “
A Technical Feasibility Study of a Solid Particle Solar Central Receiver for High Temperature Applications
,”
Sandia National Laboratories
, Sandia Report No. SAND86-8211.
10.
Martin
,
J.
, and
Vitko
,
J.
, 1982, “
ASCUAS: A Solar Central Receiver Utilizing a Solid Thermal Carrier
,”
Sandia National Laboratories
, Sandia Report No. SAND82-8203.
11.
Falcone
,
P. K.
, 1984, “
Technical Review of the Solid Particle Receiver Program
,”
SANDIA National Laboratories
, Sandia Report No. SAND84-8229.
12.
Evans
,
G.
,
Houf
,
W.
,
Grief
,
R.
, and
Crowe
,
C.
, 1985, “
Gas Particle Flow Within a High Temperature Cavity Including the Effects of Thermal Radiation
,”
Heat Transfer—Denver
,
ASME
, New York, Vol.
81
, pp.
245
253
.
13.
Evans
,
G.
,
Houf
,
W.
,
Grief
,
R.
, and
Crowe
,
C.
, 1987, “
Gas-Particle Flow Within a High Temperature Solar Cavity Receiver Including Radiation Heat Transfer
,”
ASME J. Sol. Energy Eng.
0199-6231,
109
, pp.
134
142
.
14.
Meier
,
A.
, 1999, “
A Predictive CFD Model for a Falling Particle Receiver∕Reactor Exposed to Concentrated Sunlight
,”
Chem. Eng. Sci.
0009-2509,
54
, pp.
2899
2905
.
15.
Hruby
,
J. M.
, and
Burolla
,
V. P.
, 1984, “
Solid Particle Receiver Experiments: Velocity Measurements
,”
Sandia National Laboratories
, Sandia Report No. SAND84-8238.
16.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, 1995, “
A New k‐ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
0045-7930,
24
(
3
), pp.
227
238
.
17.
Jones
,
W. P.
, and
Launder
,
B. E.
, 1972, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
214
301
.
18.
Kim
,
S. E.
,
Choudhury
,
D.
, and
Patel
,
B.
, 1997, “
Computations of Complex Turbulent Flows Using the Commercial Code FLUENT
,”
Proc. of ICASE∕LaRC∕AFOSR Symposium on Modeling Complex Turbulent Flows
,
Hampton, VA
,
Kluwer Academic Publishers
, Norwell, pp.
259
276
.
19.
Fluent
, 2005,
Fluent Users Guide, Version 6.2.16
,
Fluent Inc.
,
Lebanon, PA
.
20.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops and Particles
,
Academic Press
,
New York
.
21.
Raithby
,
G. D.
, and
Chui
,
E. H.
, 1990, “
A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
415
423
.
22.
Patankar
,
S. V.
, 1980,
Numerical Heat Ransfer and Fluid Flow
,
Hemisphere
,
New York
.
23.
Hruby
,
J. M.
,
Steeper
,
R.
,
Evans
,
G. H.
, and
Crowe
,
C. T.
, 1986, “
An Experimental and Numerical Study of Flow and Convective Heat Transfer in a Freely Falling Curtain of Particles
,”
Sandia National Laboratories
, Sandia Report No. SAND84-8714.
You do not currently have access to this content.