Abstract

Large-aperture parabolic trough collectors (LPTCs) are recognized as one of the most promising next-generation linear-focus concentrating solar power (CSP) technologies. However, large apertures inevitably introduce higher wind loads and stronger inter-row interactions. In the present study, a multi-physics-coupled model is established to study the wind load effect on multiple rows of LPTCs. First, it is found that wind load fluctuates significantly in the first four rows and then decreases gradually. The first and second rows suffer the most and least damage, respectively. Because wind load effect is highly dependent on the row number, it is recommended to build wind fences and reinforce the strength of collectors according to their positions in the solar field. Second, the wind load reduction effectiveness of the varied focal length design, incorporated in the LPTC, is numerically validated so that the stress and optical efficiency loss can be reduced by 29.1% and 58.9%, respectively. Finally, the optical efficiency loss is first introduced to evaluate the wind load reduction performance of different mirror gap sizes. The optimal mirror gap size is found to be dependent on the weight coefficient between the wind load reduction and the optical efficiency, which should be determined by the actual scenario. For weight coefficients of 1:1, 1:2, and 2:1, optimal mirror gap sizes of 90 mm, 30 mm, and 120 mm, respectively, are recommended for reference.

References

1.
Xu
,
Q. L.
,
Sun
,
J.
,
Ma
,
Z. H.
,
Xie
,
R.
, and
Wei
,
J. J.
,
2022
, “
Influences of Variable Porosity on CaO/Ca(OH)2 Thermochemical Energy Storage Characteristics in Direct/Indirect Heated Reactor
,”
Appl. Therm. Eng.
,
208
, p.
118231
.
2.
Liang
,
H. X.
,
Wang
,
F. Q.
,
Li
,
D.
,
Zhu
,
J.
, and
Tan
,
J,Y
,
2019
, “
Optical Properties and Transmittances of ZnO-Containing Nanofluids in Spectral Splitting Photovoltaic/Thermal Systems
,”
Int. J. Heat Mass Transfer
,
128
, pp.
668
678
.
3.
Ma
,
R.
,
Sun
,
J.
,
Li
,
D. H.
, and
Wei
,
J. J.
,
2020
, “
Exponentially Self-Promoted Hydrogen Evolution by Uni-Source Photo-Thermal Synergism in Concentrating Photocatalysis on Co-Catalyst-Free P25 TiO2
,”
J. Catal.
,
392
, pp.
165
174
.
4.
Michael
,
T.
,
Pablo
,
R.
,
Harold
,
A.
, and
Sonia
,
A. Z.
,
2020
,
Renewable Power Generation Costs in 2019
,
International Renewable Energy Agency (IREA)
,
Abu Dhabi, UAE
, pp.
13
14
.
5.
Riffelmann
,
K. J.
,
Daniela
,
G.
, and
Paul
,
N.
,
2011
, “
Ultimate Trough-The New Parabolic Trough Collector Generation for Large Scale Solar Thermal Power Plants
,”
ASME 2011 5th International Conference on Energy Sustainability
,
Washington, DC
,
Aug. 7–10
, pp.
789
794
, ASME Paper No. ES2011-54657.
6.
Roman
,
B.
,
Andrea
,
P.
, and
Aldo
,
S.
,
2011
, “
A 9-m-Aperture Solar Parabolic Trough Concentrator Based on a Multilayer Polymer Mirror Membrane Mounted on a Concrete Structure
,”
ASME J. Sol. Enregy Eng.
,
133
(
3
), p.
031016
.
7.
Schweitzer
,
A.
,
Schiel
,
W.
,
Birkle
,
M.
,
Nava
,
P.
,
Riffelmann
,
K. J.
,
Wohlfahrt
,
A.
, and
Kuhlmann
,
G.
,
2014
, “
Ultimate Trough®—Fabrication, Erection and Commissioning of the World’s Largest Parabolic Trough Collector
,”
Energy Procedia
,
49
, pp.
1848
1857
.
8.
Riffelmanna
,
K. J.
,
Richert
,
T.
,
Nava
,
P.
, and
Schweitzer
,
A.
,
2014
, “
Ultimate Trough®—A Significant Step Towards Cost-Competitive CSP
,”
Energy Procedia
,
49
(
9
), pp.
1831
1839
.
9.
Rubia
,
S. V.
,
Schramn
,
M.
,
Yildiz
,
H.
,
Marcotte
,
P.
,
Casero
,
D. M.
, and
Magee
,
J. S.
,
2016
, “
Construction and Thermal Efficiency Test of 145 m and 165 m SpaceTube® Large-Aperture Parabolic Trough Collector Prototypes
,”
AIP Conf. Proc.
,
1734
(
1
), p.
020024
.
10.
Marcotte
,
P.
, and
Manning
,
K.
,
2014
, “
Development of an Advanced Large-Aperture Parabolic Trough Collector
,”
Energy Procedia
,
49
(
10
), pp.
145
154
.
11.
Hoste
,
G.
, and
Schuknecht
,
N.
,
2015
, “
Thermal Efficiency Analysis of SkyFuel’s Advanced, Large-Aperture, Parabolic Trough Collector
,”
Energy Procedia
,
69
(
10
), pp.
96
105
.
12.
Eck
,
M.
, and
Steinmann
,
W. D.
,
2005
, “
Modelling and Design of Direct Solar Steam Generating Collector Fields
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
371
380
.
13.
Alhadri
,
M.
,
Alatawi
,
I.
,
Alshammari
,
F.
,
Mohamed
,
A. H.
,
Ashraf
,
M. A. H.
,
Gamal
,
B. A.
,
Mohamed
,
M. Z. A.
,
Umar
,
F. A.
,
Kabeel
,
A. E.
, and
Mohamed
,
E.
,
2022
, “
Design of a Low-Cost Parabolic Concentrator Solar Tracking System: Tubular Solar Still Application
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051006
.
14.
Hosoya
,
N.
,
Peterka
,
J. A.
,
Gee
,
R. C.
, and
Kearney
,
D.
,
2008
, “
Wind Tunnel Tests of Parabolic Trough Solar Collectors Report
,”
National Renewable Energy Laboratory
, No. NREL/SR-550–32282, Golden, CO.
15.
Pfahl
,
A.
, and
Uhlemann
,
H.
,
2011
, “
Wind Loads on Heliostats and Photovoltaic Trackers at Various Reynolds Numbers
,”
J. Wind Eng. Ind. Aerodyn
,
99
(
9
), pp.
964
968
.
16.
Sun
,
H.
,
Gong
,
B.
, and
Yao
,
Q.
,
2014
, “
A Review of Wind Loads on Heliostats and Trough Collectors
,”
Renew. Sustain. Energy Rev.
,
32
, pp.
206
221
.
17.
Zhang
,
Z.
,
Sun
,
J.
,
Wang
,
L.
, and
Wei
,
J. J.
,
2020
, “
Multiphysics-Coupled Study of Wind Load Effects on Optical Performance of Parabolic Trough Collector
,”
Sol. Energy
,
207
, pp.
1078
1087
.
18.
Gong
,
B.
,
Wang
,
Z. F.
,
Li
,
Z. N.
,
Zhang
,
J. H.
, and
Fu
,
X. D.
,
2012
, “
Field Measurements of Boundary Layer Wind Characteristics and Wind Loads of a Parabolic Trough Solar Collector
,”
Sol. Energy
,
86
(
6
), pp.
1880
1898
.
19.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
, pp.
1
692
.
20.
Currie
,
I. G.
,
2016
,
Fundamental Mechanics of Fluids
,
CRC Press
,
Boca Raton, FL
, pp.
3
582
.
21.
Landau
,
L.
,
Lifshitz
,
D.
, and
M
,
E.
,
1975
,
The Classical Theory of Fields
,
Butterworth-Heinemann
,
Oxford, UK
, pp.
43
65
.
22.
Li
,
L.
,
Sun
,
J.
, and
Li
,
Y. S.
,
2017
, “
Thermal Load and Bending Analysis of Heat Collection Element of Direct-Steam-Generation Parabolic-Trough Solar Power Plant
,”
Appl. Therm. Eng.
,
127
, pp.
1530
1542
.
23.
Almanza
,
R.
,
Gustavo
,
J.
,
Alvaro
,
L.
,
Alberto
,
V.
, and
Soria
,
A.
,
2002
, “
DSG Under Two-Phase and Stratified Flow in a Steel Receiver of a Parabolic Trough Collector
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
140
144
.
24.
Wang
,
L.
,
Sun
,
J.
,
Zhang
,
Z.
, and
Wei
,
J. J.
,
2021
, “
A Trans-Dimensional Multi-Physics Coupled Analysis Method for Direct-Steam-Generation Parabolic-Trough Loop
,”
Appl. Therm. Eng.
,
193
, p.
117011
.
25.
Wu
,
Z.
,
Yan
,
S. Y.
,
Wang
,
Z. F.
,
Ming
,
T. Z.
,
Zhao
,
X. Y.
,
Ma
,
R.
, and
Wu
,
Y. T.
,
2020
, “
The Effect of Dust Accumulation on the Cleanliness Factor of a Parabolic Trough Solar Concentrator
,”
Renew. Energy
,
152
, pp.
529
539
.
26.
Lei
,
H.
,
Huang
,
H. Z.
,
Li
,
C.
,
Pan
,
M. Z.
,
Guo
,
X. Y.
,
Chen
,
Y. J.
,
Liu
,
M. X.
, and
Wang
,
T. Y.
,
2020
, “
Numerical Simulation of Water Droplet Transport Characteristics in Cathode Channel of Proton Exchange Membrane Fuel Cell With Tapered Slope Structures
,”
Int. J. Hydrogen Eng.
,
45
(
53
), pp.
29331
29344
.
27.
Duffie
,
J.
, and
Beckman
,
W.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons
,
Hoboken, NJ
.
28.
Uzair
,
M.
, and
Rehman
,
N.
,
2021
, “
Intercept Factor for a Beam-Down Parabolic Trough Collector
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061002
.
29.
Hachicha
,
A. A.
,
Rodríguez
,
I.
,
Castro
,
J.
, and
Oliva
,
A.
,
2013
, “
Numerical Simulation of Wind Flow Around a Parabolic Trough Solar Collector
,”
Appl. Energy
,
107
, pp.
426
437
.
30.
Jeter
,
S. M.
,
1986
, “
Calculation of the Concentrated Flux Density Distribution in Parabolic Trough Collectors by a Semifinite Formulation
,”
Sol. Energy
,
37
(
11
), pp.
335
345
.
You do not currently have access to this content.