Abstract

In this paper, solar irradiance short-term forecasts were performed considering time horizons ranging from 5 min to 30 min, under a 5 min time-step. Global horizontal irradiance (GHI) and direct normal irradiance (DNI) were computed using deep neural networks with 1-dimensional convolutional neural network (CNN-1D), long short-term memory (LSTM), and CNN-LSTM layers on the benchmarking dataset FOLSOM, which is formed by predictors obtained by recursive functions on the clear sky index time series and statistical attributes extracted from images collected by a camera pointed to the zenith, characterizing endogenous and exogenous variables, respectively. To analyze the endogenous predictors influence on the accuracy of the networks, the performance was evaluated for the cases with and without them. This analysis is motivated, to our best knowledge, by the lack of works that cite the FOLSOM dataset using deep learning models, and it is necessary to verify the impact of the endogenous and exogenous predictors in the forecasts results for this specific approach. The accuracy of the networks was evaluated by the metrics mean absolute error (MAE), mean bias error (MBE), root-mean-squared error (RMSE), relative root mean squared error (rRMSE), determination coefficient (R2), and forecast skill (s). The network architectures using isolated CNN-1D and LSTM layers generally performed better. The best accuracy was obtained by the CNN-1D network for a horizon of 10 min ahead reaching an RMSE of 36.24 W/m2, improving 11.15% on this error metric compared to the persistence model.

References

1.
Carneiro
,
T. C.
,
de Carvalho
,
P. C. M.
,
Alves dos Santos
,
H.
,
Lima
,
M. A. F. B.
, and
Braga
,
A. P. d. S.
,
2022
, “
Review on Photovoltaic Power and Solar Resource Forecasting: Current Status and Trends
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
010801
.
2.
Reges
,
J. P.
,
Carvalho
,
P. C.
,
de Araújo
,
J. C.
, and
Carneiro
,
T. C.
,
2022
, “
Sizing Methodology of Floating Photovoltaic Plants in Dams of Semi-Arid Areas
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041003
.
3.
Kabouris
,
J.
, and
Kanellos
,
F.
,
2010
, “
Impacts of Large-Scale Wind Penetration on Designing and Operation of Electric Power Systems
,”
IEEE Trans. Sustain. Energy
,
1
(
2
), pp.
107
114
.
4.
Wang
,
G. C.
,
Ratnam
,
E.
,
Haghi
,
H. V.
, and
Kleissl
,
J.
,
2019
, “
Corrective Receding Horizon EV Charge Scheduling Using Short-Term Solar Forecasting
,”
Renew. Energy
,
130
, pp.
1146
1158
.
5.
Liu
,
H.
,
Chen
,
C.
,
Lv
,
X.
,
Wu
,
X.
, and
Liu
,
M.
,
2019
, “
Deterministic Wind Energy Forecasting: A Review of Intelligent Predictors and Auxiliary Methods
,”
Energy Convers. Manage.
,
195
, pp.
328
345
.
6.
Pedro
,
H. T.
, and
Coimbra
,
C. F.
,
2015
, “
Nearest-Neighbor Methodology for Prediction of Intra-Hour Global Horizontal and Direct Normal Irradiances
,”
Renew. Energy
,
80
, pp.
770
782
.
7.
Larson
,
D. P.
, and
Coimbra
,
C. F.
,
2018
, “
Direct Power Output Forecasts From Remote Sensing Image Processing
,”
ASME J. Sol. Energy Eng.
,
140
(
2
), p.
021011
.
8.
Inman
,
R. H.
,
Pedro
,
H. T.
, and
Coimbra
,
C. F.
,
2013
, “
Solar Forecasting Methods for Renewable Energy Integration
,”
Prog. Energy Combust. Sci.
,
39
(
6
), pp.
535
576
.
9.
Carneiro
,
T. C.
,
Rocha
,
P. A. C.
,
Carvalho
,
P. C. M.
, and
Fernández-Ramírez
,
L. M.
,
2022
, “
Ridge Regression Ensemble of Machine Learning Models Applied to Solar and Wind Forecasting in Brazil and Spain
,”
Appl. Energy
,
314
, p.
118936
.
10.
Lima
,
M. A. F.
,
Fernández Ramírez
,
L. M.
,
Carvalho
,
P.
,
Batista
,
J. G.
, and
Freitas
,
D. M.
,
2022
, “
A Comparison Between Deep Learning and Support Vector Regression Techniques Applied to Solar Forecast in Spain
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
010802
.
11.
Benali
,
L.
,
Notton
,
G.
,
Fouilloy
,
A.
,
Voyant
,
C.
, and
Dizene
,
R.
,
2019
, “
Solar Radiation Forecasting Using Artificial Neural Network and Random Forest Methods: Application to Normal Beam, Horizontal Diffuse and Global Components
,”
Renew. Energy
,
132
, pp.
871
884
.
12.
Marquez
,
R.
, and
Coimbra
,
C. F.
,
2011
, “
Forecasting of Global and Direct Solar Irradiance Using Stochastic Learning Methods, Ground Experiments and the NWS Database
,”
Sol. Energy
,
85
(
5
), pp.
746
756
.
13.
Trapero
,
J. R.
,
Kourentzes
,
N.
, and
Martin
,
A.
,
2015
, “
Short-Term Solar Irradiation Forecasting Based on Dynamic Harmonic Regression
,”
Energy
,
84
, pp.
289
295
.
14.
Dong
,
Z.
,
Yang
,
D.
,
Reindl
,
T.
, and
Walsh
,
W. M.
,
2013
, “
Short-Term Solar Irradiance Forecasting Using Exponential Smoothing State Space Model
,”
Energy
,
55
, pp.
1104
1113
.
15.
Box
,
G. E.
,
Jenkins
,
G. M.
,
Reinsel
,
G. C.
, and
Ljung
,
G. M.
,
2015
,
Time Series Analysis: Forecasting and Control
,
John Wiley & Sons
,
Hoboken, NJ
, p.
712
.
16.
Young
,
P. C.
,
Pedregal
,
D. J.
, and
Tych
,
W.
,
1999
, “
Dynamic Harmonic Regression
,”
J. Forecasting
,
18
(
6
), pp.
369
394
.
17.
Jalali
,
S. M. J.
,
Ahmadian
,
S.
,
Kavousi-Fard
,
A.
,
Khosravi
,
A.
, and
Nahavandi
,
S.
,
2021
, “
Automated Deep CNN-LSTM Architecture Design for Solar Irradiance Forecasting
,”
IEEE Trans. Syst. Man Cybernet. Syst.
,
52
(
1
), pp.
54
65
.
18.
Donahue
,
J.
,
Hendricks
,
L. A.
,
Rohrbach
,
M.
,
Venugopalan
,
S.
,
Guadarrama
,
S.
,
Saenko
,
K.
, and
Darrell
,
T.
,
2017
, “
Long-Term Recurrent Convolutional Networks for Visual Recognition and Description
,”
IEEE Trans. Pattern Anal. Mach. Intell.
39
(
4
), pp.
677
691
.
19.
Kumari
,
P.
, and
Toshniwal
,
D.
,
2021
, “
Long Short Term Memory–Convolutional Neural Network Based Deep Hybrid Approach for Solar Irradiance Forecasting
,”
Appl. Energy
,
295
, p.
117061
.
20.
Gao
,
B.
,
Huang
,
X.
,
Shi
,
J.
,
Tai
,
Y.
, and
Zhang
,
J.
,
2020
, “
Hourly Forecasting of Solar Irradiance Based on CEEMDAN and Multi-Strategy CNN-LSTM Neural Networks
,”
Renew. Energy
,
825
(
162
), pp.
1665
1683
.
21.
Cannizzaro
,
D.
,
Aliberti
,
A.
,
Bottaccioli
,
L.
,
Macii
,
E.
,
Acquaviva
,
A.
, and
Patti
,
E.
,
2021
, “
Solar Radiation Forecasting Based on Convolutional Neural Network and Ensemble Learning
,”
Expert Syst. Appl.
,
181
, p.
115167
.
22.
Zang
,
H.
,
Liu
,
L.
,
Sun
,
L.
,
Cheng
,
L.
,
Wei
,
Z.
, and
Sun
,
G.
,
2020
, “
Short-Term Global Horizontal Irradiance Forecasting Based on a Hybrid CNN-LSTM Model With Spatiotemporal Correlations
,”
Renew. Energy
,
160
, pp.
26
41
.
23.
Zhao
,
X.
,
Wei
,
H.
,
Wang
,
H.
,
Zhu
,
T.
, and
Zhang
,
K.
,
2019
, “
3D-CNN-Based Feature Extraction of Ground-Based Cloud Images for Direct Normal Irradiance Prediction
,”
Sol. Energy
,
181
, pp.
510
518
.
24.
Matsunobu
,
L. M.
,
Pedro
,
H. T.
, and
Coimbra
,
C. F.
,
2021
, “
Cloud Detection Using Convolutional Neural Networks on Remote Sensing Images
,”
Sol. Energy
,
230
, pp.
1020
1032
.
25.
Pedro
,
H. T.
,
Larson
,
D. P.
, and
Coimbra
,
C. F.
,
2019
, “
A Comprehensive Dataset for the Accelerated Development and Benchmarking of Solar Forecasting Methods
,”
J. Renew. Sustain. Energy
,
11
(
3
), p.
036102
.
26.
Ineichen
,
P.
, and
Perez
,
R.
,
2002
, “
A New Airmass Independent Formulation for the Link Turbidity Coefficient
,”
Sol. Energy
,
73
(
3
), pp.
151
157
.
27.
Ma
,
Y.
, and
Zhang
,
S.
,
2021
, “
Feature Selection Module for CNN Based Object Detector
,”
IEEE Access
,
9
, pp.
69456
69466
.
28.
Jiang
,
H.
,
Hu
,
Q.
,
Zhi
,
Z.
,
Gao
,
J.
,
Gao
,
Z.
,
Wang
,
R.
,
He
,
S.
, and
Li
,
H.
,
2021
, “
Convolution Neural Network Model With Improved Pooling Strategy and Feature Selection for Weld Defect Recognition
,”
Weld. World
,
65
(
4
), pp.
731
744
.
29.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
30.
Li
,
M.-F.
,
Tang
,
X.-P.
,
Wu
,
W.
, and
Liu
,
H.-B.
,
2013
, “
General Models for Estimating Daily Global Solar Radiation for Different Solar Radiation Zones in Mainland China
,”
Energy Convers. Manage.
,
70
, pp.
139
148
.
31.
Pedro
,
H. T.
,
Coimbra
,
C. F.
,
David
,
M.
, and
Lauret
,
P.
,
2018
, “
Assessment of Machine Learning Techniques for Deterministic and Probabilistic Intra-Hour Solar Forecasts
,”
Renew. Energy
,
123
, pp.
191
203
.
32.
Pedro
,
H. T.
,
Coimbra
,
C. F.
, and
Lauret
,
P.
,
2019
, “
Adaptive Image Features for Intra-Hour Solar Forecasts
,”
J. Renew. Sustain. Energy
,
11
(
3
), p.
036101
.
33.
Rocha
,
P. A.
, and
Santos
,
V. O.
,
2022
, “
Global Horizontal and Direct Normal Solar Irradiance Modeling by the Machine Learning Methods XGBoost and Deep Neural Networks With CNN-LSTM Layers: A Case Study Using the GOES-16 Satellite Imagery
,”
Int. J. Energy Environ. Eng.
, pp.
1
16
.
34.
Yang
,
D.
,
van der Meer
,
D.
, and
Munkhammar
,
J.
,
2020
, “
Probabilistic Solar Forecasting Benchmarks on a Standardized Dataset at Folsom, California
,”
Sol. Energy
,
206
, pp.
628
639
.
35.
Aguirre
,
L. A.
,
2004
,
Introdução à Identificação de Sistemas—Técnicas Lineares e Não-Lineares Aplicadas a Sistemas Reais
, ed.,
Editora UFMG
,
Belo Horizonte
.
You do not currently have access to this content.