Abstract

The heating system combining solar air collector with hollow ventilated interior wall (SAC-HVIW) can effectively extend the heating time. However, due to the large wall-window ratio of buildings on Tibetan Plateau, the strong solar radiation irradiating on the interior wall may influence the thermal performance of HVIW. In this paper, an experimental room is constructed to study the influence of external solar heat gain on the thermal performance of HVIW. Steady-state measurements are carried out by considering different ventilation rates, supply air temperatures and heat gains. Results show that the external heat gain has almost no effect on U-value, but it increases the heating capacity by increasing the logarithmic mean temperature difference (LMTD). For all cases, the heating capacity of HVIW is related to LMTD and supply air velocity, and U-value mainly increases with supply air velocity. Heat transfer of the interior surface of HVIW is dominated by forced convection which increases linearly with supply air velocity. The radiant heat transfer coefficient of the exterior surface of HVIW is not affected by the external heat gain with the mean value of 5.65 W/(m2 · K), while the convective heat transfer coefficient increases logarithmically with the external heat gain. The proportion of radiant heat transfer decreases as a power function with the increase of the exterior surface temperature. Measurements in this paper are used to evaluate the influence of external heat gain on the heating performance of HVIW, which is beneficial to the design of HVIW.

References

1.
Yu
,
T.
,
Liu
,
B. W.
,
Lei
,
B.
,
Yuan
,
Y. P.
,
Bi
,
H. Q.
, and
Zhang
,
Z. L.
,
2019
, “
Thermal Performance of a Heating System Combining Solar air Collector with Ventilated Interior Wall in Residential Buildings on Tibetan Plateau
,”
Energy
,
182
(
1
), pp.
93
109
.
2.
Yu
,
T.
,
Zhao
,
J. D.
,
Zhou
,
J. R.
, and
Lei
,
B.
,
2020
, “
Experimental Investigation of Thermal Performance of a Heating System Combining Solar air Collector With Hollow Ventilated Interior Wall
,”
Renewable Energy
,
147
(
1
), pp.
1825
1835
.
3.
Zhou
,
J. R.
,
Yu
,
T.
,
Wu
,
H.
,
Lei
,
B.
,
Zheng
,
J. C.
, and
Ji
,
W. H.
,
2020
, “
A Dynamic Model of Hollow Ventilated Interior Wall Integrated With Solar air Collector
,”
Appl. Therm. Eng.
,
175
(
5
), p.
115380
.
4.
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
2012
,
ASHRAE Handbook, HVAC Systems and Equipment
,
ASHRAE
,
Atlanta
.
5.
Raji
,
A.
,
Hasnaoui
,
M.
, and
Bahlaoui
,
A.
,
2008
, “
Numerical Study of Natural Convection Dominated Heat Transfer in a Ventilated air Channel: Case of Forced Flow Playing Simultaneous Assisting and Opposing Roles
,”
Int. J. Heat Fluid Flow
,
29
(
4
), pp.
1174
1181
.
6.
Martí-Herrero
,
J.
, and
Heras-Celemin
,
M. R.
,
2007
, “
Dynamic Physical Model for a Solar Chimney
,”
Sol. Energy
,
81
(
5
), pp.
614
622
.
7.
Park
,
D.
, and
Battaglia
,
F.
,
2015
, “
Application of a Wall-Solar Chimney for Passive Ventilation of Dwellings
,”
ASME J. Sol. Energy Eng.
,
137
(
6
), p.
061006
.
8.
Oz
,
S.
,
Fogel
,
S.
,
Dubovsky
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2004
, “
Solar-Assisted Induced Ventilation of Small Field Structures
,”
ASME J. Sol. Energy Eng.
,
126
(
2
), pp.
781
788
.
9.
Candanedo
,
L. M.
,
Athienitis
,
A.
, and
Park
,
K. W.
,
2011
, “
Convective Heat Transfer Coefficients in a Building-Integrated Photovoltaic/Thermal System
,”
ASME J. Sol. Energy Eng.
,
133
(
2
), p.
021002
.
10.
Zhang
,
Z.
,
Pate
,
M.
, and
Nelson
,
R.
,
1988
, “
An Investigation of a Residential Solar System Coupled to a Radiant Panel Ceiling
,”
ASME J. Sol. Energy Eng.
,
110
(
3
), pp.
172
179
.
11.
Yang
,
M.
,
Yang
,
X. D.
,
Wang
,
P. S.
,
Shan
,
M.
, and
Deng
,
J.
,
2013
, “
A new Chinese Solar Kang and its Dynamic Heat Transfer Model
,”
Energy Build.
,
62
(
7
), pp.
539
549
.
12.
Yang
,
M.
,
Yang
,
X. D.
,
Wang
,
Z. F.
, and
Wang
,
P. S.
,
2014
, “
Thermal Analysis of a new Solar Kang System
,”
Energy Build.
,
75
(
6
), pp.
531
537
.
13.
Chen
,
Y. X.
,
Athienitis
,
A. K.
, and
Galal
,
K.
,
2010
, “
Design and Thermal Performance of a BIPV/T System Thermally Coupled with a Ventilated Concrete Slab in a low Energy Solar House: Part 1, BIPV/T System and House Energy Concept
,”
Sol. Energy
,
84
(
11
), pp.
1892
1907
.
14.
Chen
,
Y. X.
,
Galal
,
K.
, and
Athienitis
,
A. K.
,
2010
, “
Design and Thermal Performance of a BIPV/T System Thermally Coupled with a Ventilated Concrete Slab in a low Energy Solar House: Part 2, Ventilated Concrete Slab
,”
Sol. Energy
,
84
(
11
), pp.
1908
1919
.
15.
Chae
,
Y. T.
, and
Strand
,
R. K.
,
2013
, “
Modeling Ventilated Slab Systems Using a Hollow Core Slab: Implementation in a Whole Building Energy Simulation Program
,”
Energy Build.
,
57
(
2
), pp.
165
175
.
16.
Acikgoz
,
O.
,
2015
, “
A Novel Evaluation Regarding the Influence of Surface Emissivity on Radiative and Total Heat Transfer Coefficients in Radiant Heating Systems by Means of Theoretical and Numerical Methods
,”
Energy Build.
,
102
(
1
), pp.
105
116
.
17.
Acikgoz
,
O.
,
Cebi
,
A.
,
Dalkilic
,
A. S.
,
Koca
,
A.
,
Cetin
,
G.
,
Gemici
,
Z.
, and
Wongwises
,
S.
,
2017
, “
A Novel ANN-Based Approach to Estimate Heat Transfer Coefficients in Radiant Wall Heating System
,”
Energy Build.
,
144
(
1
), pp.
401
415
.
18.
Karakoyun
,
Y.
,
Acikgoz
,
O.
,
Cebi
,
A.
,
Koca
,
A.
,
Cetin
,
G.
,
Dalkilic
,
A. S.
, and
Wongwises
,
S.
,
2021
, “
A Comprehensive Approach to Analyze the Discrepancies in Heat Transfer Characteristics Pertaining to Radiant Ceiling Heating System
,”
Appl. Therm. Eng.
,
187
(
25
), p.
116517
.
19.
Andres-Chicote
,
M.
,
Tejero-González
,
A.
,
Velasco-Gómez
,
E.
, and
Rey-Martínez
,
F. J.
,
2012
, “
Experimental Study on the Cooling Capacity of a Radiant Cooled Ceiling System
,”
Energy Build.
,
54
(
11
), pp.
207
214
.
20.
Lateb
,
M.
, and
Fellouah
,
H.
,
2019
, “
Duty Cycle of a Radiant Ceiling Heating System Under Extremely Cold-Temperature Conditions: a Theoretical Assessment
,”
Energy Power Eng.
,
13
(
10
), pp.
359
368
.
21.
Yu
,
T.
,
Heiselberg
,
P.
,
Lei
,
B.
,
Pomianowski
,
M.
,
Zhang
,
C.
, and
Jensen
,
R.
,
2015
, “
Experimental Investigation of Cooling Performance of a Novel HVAC System Combining Natural Ventilation with Diffuse Ceiling Inlet and TABS
,”
Energy Build.
,
105
(
15
), pp.
165
177
.
22.
Yu
,
T.
,
Heiselberg
,
P.
,
Lei
,
B.
, and
Pomianowski
,
M.
,
2014
, “
Validation and Modification of Modeling Thermally Activated Building Systems (TABS) Using EnergyPlus
,”
Build. Simul.
,
7
(
6
), pp.
615
627
.
23.
Yuan
,
Y. L.
,
Zhang
,
X.
, and
Zhou
,
X.
,
2017
, “
Simplified Correlations for Heat Transfer Coefficient and Heat Flux Density of Radiant Ceiling Panels
,”
Sci. Technol. Built Environ.
,
23
(
2
), pp.
251
263
.
24.
Miriel
,
J.
,
Serres
,
L.
, and
Trombe
,
A.
,
2002
, “
Radiant Ceiling Panel Heating–Cooling Systems: Experimental and Simulated Study of the Performances, Thermal Comfort and Energy Consumptions
,”
Appl. Therm. Eng.
,
22
(
16
), pp.
1861
1873
.
25.
Cholewa
,
T.
,
Anasiewicz
,
R.
,
Siuta-Olcha
,
A.
, and
Skwarczynski
,
M. A.
,
2017
, “
On the Heat Transfer Coefficients Between Heated/Cooled Radiant Ceiling and Room
,”
Appl. Therm. Eng.
,
117
(
5
), pp.
76
84
.
26.
Causone
,
F.
,
Corgnati
,
S. P.
,
Filippi
,
M.
, and
Olesen
,
B. W.
,
2009
, “
Experimental Evaluation of Heat Transfer Coefficients Between Radiant Ceiling and Room
,”
Energy Build.
,
41
(
6
), pp.
622
628
.
27.
Koca
,
A.
,
Gemici
,
Z.
,
Topacoglu
,
Y.
,
Cetin
,
G.
,
Acet
,
R. C.
, and
Kanbur
,
B. B.
,
2014
, “
Experimental Investigation of Heat Transfer Coefficients Between Hydronic Radiant Heated Wall and Room
,”
Energy Build.
,
82
(
10
), pp.
211
221
.
28.
Koca
,
A.
, and
Cetin
,
G.
,
2017
, “
Experimental Investigation on the Heat Transfer Coefficients of Radiant Heating Systems: Wall, Ceiling and Wall-Ceiling Integration
,”
Energy Build.
,
148
(
1
), pp.
311
326
.
29.
Zhao
,
K.
,
Liu
,
X. H.
, and
Jiang
,
Y.
,
2014
, “
Dynamic Performance of Water-Based Radiant Floors During Start-up and High-Intensity Solar Radiation
,”
Sol. Energy
,
101
(
3
), pp.
232
244
.
30.
Zhao
,
K.
,
Liu
,
X. H.
, and
Jiang
,
Y.
,
2014
, “
On-Site Measured Performance of a Radiant Floor Cooling/Heating System in Xi’an Xianyang International Airport
,”
Sol. Energy
,
108
(
10
), pp.
274
286
.
31.
Benzaama
,
M. H.
,
Lachi
,
M.
,
Maalouf
,
C.
,
Mokhtari
,
A. M.
,
Polidori
,
G.
, and
Makhlouf
,
M.
,
2016
, “
Study of the Effect of sun Patch on the Transient Thermal Behaviour of a Heating Floor in Algeria
,”
Energy Build.
,
133
(
1
), pp.
257
270
.
32.
Athienitis
,
A. K.
, and
Chen
,
Y.
,
2000
, “
The Effect of Solar Radiation on Dynamic Thermal Performance of Floor Heating Systems
,”
Sol. Energy
,
69
(
3
), pp.
229
237
.
33.
Athienitis
,
A. K.
,
1997
, “
Investigation of Thermal Performance of a Passive Solar Building with Floor Radiant Heating
,”
Sol. Energy
,
61
(
5
), pp.
337
345
.
34.
Yu
,
T.
,
Zhao
,
J. D.
,
Zhou
,
J. R.
, and
Lei
,
B.
,
2020
, “
Experimental and Numerical Studies on Dynamic Thermal Performance of Hollow Ventilated Interior Wall
,”
Appl. Therm. Eng.
,
180
(
5
), pp.
1
18
.
35.
IO Standardization
,
2008
, “Guide to the Expression of Uncertainty in Measurements,” ISO, Nevada.
36.
Mathioulakis
,
E.
,
Voropoulos
,
K.
, and
Belessiotis
,
V.
,
1999
, “
Assessment of Uncertainty in Solar Collector Modeling and Testing
,”
Sol. Energy
,
66
(
5
), pp.
337
347
.
37.
Diaz
,
N. F.
,
Lebrun
,
J.
, and
Andre
,
P.
,
2010
, “
Experimental Study and Modeling of Cooling Ceiling Systems Using Steady-State Analysis
,”
Int. J. Refrig.
,
33
(
4
), pp.
793
805
.
38.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
John Wiley and Sons
,
NY
.
39.
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
2000
, “2000 ASHRAE Handbook-HVAC Systems and Equipment,”
Chapter 6: Panel Heating and Cooling
,
ASHRAE
,
Atlanta
.
40.
Holman
,
J. P.
,
1994
,
Experimental Methods for Engineers
, 6th Ed.,
McGraw-Hill Companies, Inc.
,
New York
.
You do not currently have access to this content.