Abstract

Multi-megawatt wind turbines are nowadays a mature technology, and therefore, there is considerable scientific and industrial attention to the opportunity of further improving the efficiency of wind kinetic energy conversion into electricity. One of the major developments in this field of research regards the optimization of wind turbine control. This work deals with a test case of yaw control optimization on a 2-MW wind turbine sited in Italy. The objective of the work is to compute the performance improvement provided by the upgrade after some months of operation. This has been accomplished through the formulation of an appropriate model for the power of the wind turbine of interest and the analysis of the residuals between model estimates and measurements before and after the upgrade. In this work, a general procedure for selecting a robust multivariate linear model is adopted, and the resulting model, employing as input variables several operational variables from the nearby wind turbines in the farm, is used for quantifying the performance improvement. The estimate is that this upgrade provides a 0.8% improvement of the annual energy production.

References

1.
Park
,
J.
, and
Law
,
K. H.
,
2015
, “
Cooperative Wind Turbine Control for Maximizing Wind Farm Power Using Sequential Convex Programming
,”
Energy. Convers. Manage.
,
101
, pp.
295
316
. 10.1016/j.enconman.2015.05.031
2.
Park
,
J.
, and
Law
,
K. H.
,
2016
, “
A Data-Driven, Cooperative Wind Farm Control to Maximize the Total Power Production
,”
Appl. Energy.
,
165
, pp.
151
165
. 10.1016/j.apenergy.2015.11.064
3.
Wang
,
F.
, and
Garcia-Sanz
,
M.
,
2018
, “
Wind Farm Cooperative Control for Optimal Power Generation
,”
Wind Eng.
,
42
(
6
), pp.
547
560
.
4.
Gebraad
,
P.
,
Thomas
,
J. J.
,
Ning
,
A.
,
Fleming
,
P.
, and
Dykes
,
K.
,
2017
, “
Maximization of the Annual Energy Production of Wind Power Plants by Optimization of Layout and Yaw-based Wake Control
,”
Wind Energy
,
20
(
1
), pp.
97
107
. 10.1002/we.1993
5.
Gebraad
,
P.
,
Teeuwisse
,
F.
,
Wingerden
,
J.
,
Fleming
,
P. A.
,
Ruben
,
S.
,
Marden
,
J.
, and
Pao
,
L.
,
2016
, “
Wind Plant Power Optimization Through Yaw Control Using a Parametric Model for Wake Effects–a Cfd Simulation Study
,”
Wind Energy
,
19
(
1
), pp.
95
114
. 10.1002/we.1822
6.
Fleming
,
P. A.
,
Ning
,
A.
,
Gebraad
,
P. M.
, and
Dykes
,
K.
,
2016
, “
Wind Plant System Engineering Through Optimization of Layout and Yaw Control
,”
Wind Energy
,
19
(
2
), pp.
329
344
. 10.1002/we.1836
7.
Fleming
,
P.
,
Annoni
,
J.
,
Shah
,
J. J.
,
Wang
,
L.
,
Ananthan
,
S.
,
Zhang
,
Z.
,
Hutchings
,
K.
,
Wang
,
P.
,
Chen
,
W.
, and
Chen
,
L.
,
2017
, “
Field Test of Wake Steering At An Offshore Wind Farm
,”
Wind Energy Sci.
,
2
(
1
), pp.
229
239
. 10.5194/wes-2-229-2017
8.
Barlas
,
T. K.
, and
Van Kuik
,
G.
,
2010
, “
Review of State of the Art in Smart Rotor Control Research for Wind Turbines
,”
Prog. Aerospace Sci.
,
46
(
1
), pp.
1
27
. 10.1016/j.paerosci.2009.08.002
9.
Tsai
,
K.-C.
,
Pan
,
C.-T.
,
Cooperman
,
A. M.
,
Johnson
,
S. J.
, and
Van Dam
,
C.
,
2015
, “
An Innovative Design of a Microtab Deployment Mechanism for Active Aerodynamic Load Control
,”
Energies
,
8
(
6
), pp.
5885
5897
. 10.3390/en8065885
10.
Fernández-Gámiz
,
U.
,
Marika Velte
,
C.
,
Réthoré
,
P.-E.
,
Sørensen
,
N. N.
, and
Egusquiza
,
E.
,
2016
, “
Testing of Self-similarity and Helical Symmetry in Vortex Generator Flow Simulations
,”
Wind Energy
,
19
(
6
), pp.
1043
1052
. 10.1002/we.1882
11.
Aramendia
,
I.
,
Fernandez-Gamiz
,
U.
,
Ramos-Hernanz
,
J. A.
,
Sancho
,
J.
,
Lopez-Guede
,
J. M.
, and
Zulueta
,
E.
,
2017
, “Flow Control Devices for Wind Turbines.”
Energy Harvesting and Energy Efficiency
.
Springer
, pp.
629
655
.
12.
Bossanyi
,
E.
, and
King
,
J.
,
2012
, “
Improving Wind Farm Output Predictability by Means of a Soft Cut-Out Strategy
,”
European Wind Energy Conference and Exhibition EWEA
,
Copenhagen, Denmark
,
Apr. 16–19
, Vol.
2012
,
Curran Associates, Inc
.
13.
Astolfi
,
D.
,
Castellani
,
F.
,
Lombardi
,
A.
, and
Terzi
,
L.
,
2019
, “
About the Extension of Wind Turbine Power Curve in the High Wind Region
,”
ASME J. Sol. Energy. Eng.
,
141
(
1
), p.
014501
. 10.1115/1.4041156
14.
Astolfi
,
D.
,
Castellani
,
F.
, and
Terzi
,
L.
,
2018
, “
Wind Turbine Power Curve Upgrades
,”
Energies
,
11
(
5
), p.
1300
. 10.3390/en11051300
15.
Astolfi
,
D.
, and
Castellani
,
F.
,
2019
, “
Wind Turbine Power Curve Upgrades: Part Ii
,”
Energies
,
12
(
8
), p.
1503
. 10.3390/en12081503
16.
Lee
,
G.
,
Ding
,
Y.
,
Xie
,
L.
, and
Genton
,
M. G.
,
2015
, “
A Kernel Plus Method for Quantifying Wind Turbine Performance Upgrades
,”
Wind Energy
,
18
(
7
), pp.
1207
1219
. 10.1002/we.1755
17.
Hwangbo
,
H.
,
Ding
,
Y.
,
Eisele
,
O.
,
Weinzierl
,
G.
,
Lang
,
U.
, and
Pechlivanoglou
,
G.
,
2017
, “
Quantifying the Effect of Vortex Generator Installation on Wind Power Production: An Academia-industry Case Study
,”
Renewable Energy
,
113
, pp.
1589
1597
. 10.1016/j.renene.2017.07.009
18.
Astolfi
,
D.
,
Castellani
,
F.
, and
Terzi
,
L.
,
2018
, “
A Scada Data Mining Method for Precision Assessment of Performance Enhancement From Aerodynamic Optimization of Wind Turbine Blades
,”
The Science of Making Torque from Wind (TORQUE 2018)
,
Milan, Italy
,
June 20–22
,
IOP Publishing
, p.
032001
.
19.
Terzi
,
L.
,
Lombardi
,
A.
,
Castellani
,
F.
, and
Astolfi
,
D.
,
2018
, “
Innovative Methods for Wind Turbine Power Curve Upgrade Assessment
,”
Wind Europe Conference 2018 within the Global Wind Summit
,
Hamburg, Germany
,
Sept. 25–28
,
IOP Publishing
, p.
012036
.
20.
Astolfi
,
D.
,
Castellani
,
F.
,
Fravolini
,
M. L.
,
Cascianelli
,
S.
, and
Terzi
,
L.
,
2019
, “
Precision Computation of Wind Turbine Power Upgrades: An Aerodynamic and Control Optimization Test Case
,”
ASME J. Energy. Res. Technol.
,
141
(
5
), p.
051205
. 10.1115/1.4042450
21.
Dai
,
J.
,
Yang
,
X.
,
Hu
,
W.
,
Wen
,
L.
, and
Tan
,
Y.
,
2018
, “
Effect Investigation of Yaw on Wind Turbine Performance Based on Scada Data
,”
Energy
,
149
, pp.
684
696
. 10.1016/j.energy.2018.02.059
22.
Song
,
D.
,
Yang
,
J.
,
Fan
,
X.
,
Liu
,
Y.
,
Liu
,
A.
,
Chen
,
G.
, and
Joo
,
Y. H.
,
2018
, “
Maximum Power Extraction for Wind Turbines Through a Novel Yaw Control Solution Using Predicted Wind Directions
,”
Energy. Convers. Manage.
,
157
, pp.
587
599
. 10.1016/j.enconman.2017.12.019
23.
Kragh
,
K. A.
, and
Hansen
,
M. H.
,
2015
, “
Potential of Power Gain with Improved Yaw Alignment
,”
Wind Energy
,
18
(
6
), pp.
979
989
. 10.1002/we.1739
24.
Wan
,
S.
,
Cheng
,
L.
, and
Sheng
,
X.
,
2015
, “
Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model
,”
Energies
,
8
(
7
), pp.
6286
6301
. 10.3390/en8076286
25.
Saenz-Aguirre
,
A.
,
Zulueta
,
E.
,
Fernandez-Gamiz
,
U.
,
Lozano
,
J.
, and
Lopez-Guede
,
J. M.
,
2019
, “
Artificial Neural Network Based Reinforcement Learning for Wind Turbine Yaw Control
,”
Energies
,
12
(
3
), p.
436
. 10.3390/en12030436
26.
Saenz-Aguirre
,
A.
,
Zulueta
,
E.
,
Fernandez-Gamiz
,
U.
,
Ulazia
,
A.
, and
Teso-Fz-Betono
,
D.
,
2020
, “
Performance Enhancement of the Artificial Neural Network–based Reinforcement Learning for Wind Turbine Yaw Control
,”
Wind Energy
,
23
(
3
), pp.
676
690
. 10.1002/we.2451
27.
Astolfi
,
D.
,
Castellani
,
F.
,
Becchetti
,
M.
,
Lombardi
,
A.
, and
Terzi
,
L.
,
2020
, “
Wind Turbine Systematic Yaw Error: Operation Data Analysis Techniques for Detecting it and Assessing Its Performance Impact
,”
Energies
,
13
(
9
), p.
2351
. 10.3390/en13092351
28.
Astolfi
,
D.
,
Castellani
,
F.
, and
Terzi
,
L.
,
2020
, “
An Operation Data-based Method for the Diagnosis of Zero-point Shift of Wind Turbines Yaw Angle
,”
ASME J. Sol. Energy. Eng.
,
142
(
2
), p.
6286
. 10.1115/1.4045081
29.
Pei
,
Y.
,
Qian
,
Z.
,
Jing
,
B.
,
Kang
,
D.
, and
Zhang
,
L.
,
2018
, “
Data-driven Method for Wind Turbine Yaw Angle Sensor Zero-point Shifting Fault Detection
,”
Energies
,
11
(
3
), p.
553
. 10.3390/en11030553
30.
Astolfi
,
D.
,
Castellani
,
F.
,
Scappaticci
,
L.
, and
Terzi
,
L.
,
2017
, “
Diagnosis of Wind Turbine Misalignment Through Scada Data
,”
Diagnostyka
,
18
(
1
), pp.
17
24
.
31.
Pope
,
P.
, and
Webster
,
J.
,
1972
, “
The Use of An F-statistic in Stepwise Regression Procedures
,”
Technometrics
,
14
(
2
), pp.
327
340
.
32.
Refaeilzadeh
,
P.
,
Tang
,
L.
, and
Liu
,
H.
,
2009
, “Cross-validation.”
Encyclopedia of database systems
.
Springer
, pp.
532
538
.
33.
Gonzalez
,
E.
,
Stephen
,
B.
,
Infield
,
D.
, and
Melero
,
J. J.
,
2019
, “
Using High-Frequency Scada Data for Wind Turbine Performance Monitoring: A Sensitivity Study
,”
Renewable Energy
,
131
, pp.
841
853
. 10.1016/j.renene.2018.07.068
You do not currently have access to this content.