Abstract

This paper aims to investigate the transient behavior of a salinity gradient solar pond (SGSP) under Mediterranean climate. For this purpose, a 2D numerical model is developed in which the absorption of solar radiation by different layers of saline water, the wind effect at the SGSP free surface, the heat losses from the SGSP free surface, and the development of the double-diffusive convection in the lower and upper convective zones are considered. The governing equations of continuity, momentum, thermal energy, and diffusion are solved using the finite volume method with SIMPLE algorithm. The validity of the numerical model developed in fortran 95 programing language is achieved through the comparisons of the results computed with the available numerical and experimental results obtained by literature studies. Results show that the developed numerical model can predict transient behavior of the SGSPs with a good accuracy. As an application of this model, the temperature, salt concentration, energy stored, and storage efficiency variations of a proposed SGSP are analyzed under Mediterranean climate. The results show that the lower convective zone (LCZ) temperature increases from 15 °C to around 95 °C whereas the temperature of the upper convective zone (UCZ) varies sinusoidally depending on that of the ambient air. Furthermore, the salt concentration of the LCZ decreases from 250 kg/m3 to around 248 kg/m3 while that of the UCZ increases from 50 kg/m3 to about 52 kg/m3. Additionally, the thermal energy stored is around 135 MJ with an efficiency of about 38%, which confirms the capacity of the SGSP to store thermal energy as sensible heat.

References

1.
Sayer
,
A. H.
,
Al-Hussaini
,
H.
, and
Campbell
,
A. N.
,
2016
, “
New Theoretical Modelling of Heat Transfer in Solar Ponds
,”
Sol. Energy
,
125
, pp.
207
218
.
2.
Nait Brahim
,
A.
,
Rghif
,
Y.
, and
Bahraoui
,
F.
,
2022
, “
Numerical Investigation of Solar Energy Storage by a Salt Gradient Solar Pond in Several Moroccan Cities
,”
E3S Web of Conferences
,
Meknes, Morocco
,
Dec. 9–10
, Vol.
336
, p.
00020
.
3.
Goswami
,
R.
, and
Das
,
R.
,
2020
, “
Experimental Analysis of a Novel Solar Pond Driven Thermoelectric Energy System
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121302
.
4.
Berkani
,
M.
,
Sissaoui
,
H.
,
Abdelli
,
A.
,
Kermiche
,
M.
, and
Barker-Read
,
G.
,
2015
, “
Comparison of Three Solar Ponds With Different Salts Through Bi-Dimensional Modeling
,”
Sol. Energy
,
116
, pp.
56
68
.
5.
Reges
,
J. P.
,
Carvalho
,
P. C. M.
,
de Araújo
,
J. C.
, and
Carneiro
,
T. C.
,
2022
, “
Sizing Methodology of Floating Photovoltaic Plants in Dams of Semi-Arid Areas
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041003
.
6.
Abd El-Hamid
,
M.
,
Wei
,
G.
,
Sherin
,
M.
,
Cui
,
L.
, and
Du
,
X.
,
2021
, “
Comparative Study of Different Photovoltaic/Thermal Hybrid Configurations From Energetic and Exergetic Points of View: A Numerical Analysis
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061006
.
7.
Kaiss
,
E.-C. A.
, and
Hassan
,
N. M.
,
2023
, “
Numerical Modeling of Dust Deposition Rate on Ground-Mounted Solar Photovoltaic Panels
,”
ASME J. Sol. Energy Eng.
,
145
(
4
), p.
041003
.
8.
Oubenmoh
,
S.
,
Allouhi
,
A.
,
Sebbar
,
E. H.
,
Saadani
,
R.
,
Jamil
,
A.
,
Ait Mssad
,
A.
,
Rahmoune
,
M.
, and
Bentaleb
,
M.
,
2023
, “
Energy Assessment and Economic Study of Solar Floor Heating System in Different Climates in Morocco
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011005
.
9.
Sayer
,
A. H.
,
Al-Hussaini
,
H.
, and
Campbell
,
A. N.
,
2017
, “
Experimental Analysis of the Temperature and Concentration Profiles in a Salinity Gradient Solar Pond With, and Without a Liquid Cover to Suppress Evaporation
,”
Sol. Energy
,
155
, pp.
1354
1365
.
10.
Akbarzadeh
,
A.
, and
Ahmadi
,
G.
,
1979
, “
Under Ground Thermal Storage in the Operation of Solar Ponds
,”
Energy
,
4
(
6
), pp.
1119
1125
.
11.
Dehghan
,
A. A.
,
Movahedi
,
A.
, and
Mazidi
,
M.
,
2013
, “
Experimental Investigation of Energy and Exergy Performance of Square and Circular Solar Ponds
,”
Sol. Energy
,
97
, pp.
273
284
.
12.
Assari
,
M. R.
,
Basirat Tabrizi
,
H.
,
Kavoosi Nejad
,
A.
, and
Parvar
,
M.
,
2015
, “
Experimental Investigation of Heat Absorption of Different Solar Pond Shapes Covered With Glazing Plastic
,”
Sol. Energy
,
122
, pp.
569
578
.
13.
Rghif
,
Y.
,
Bahraoui
,
F.
, and
Zeghmati
,
B.
,
2022
, “
Experimental and Numerical Investigations of Heat and Mass Transfer in a Salt Gradient Solar Pond Under a Solar Simulator
,”
Sol. Energy
,
236
, pp.
841
859
.
14.
Montalà
,
M.
,
Cortina
,
J. L.
,
Akbarzadeh
,
A.
, and
Valderrama
,
C.
,
2019
, “
Stability Analysis of an Industrial Salinity Gradient Solar Pond
,”
Sol. Energy
,
180
, pp.
216
225
.
15.
Rghif
,
Y.
,
Zeghmati
,
B.
, and
Bahraoui
,
F.
,
2020
, “
Modeling of a Salt Gradient Solar Pond Under Moroccan Climate Taking Into Account Double-Diffusive Convection
,”
Mater. Today: Proc.
,
30
(
Part 4
), pp.
883
888
.
16.
Rghif
,
Y.
,
Zeghmati
,
B.
, and
Bahraoui
,
F.
,
2021
, “
Numerical Study of Soret and Dufour Coefficients on Heat and Mass Transfer in a Salt Gradient Solar Pond
,”
AIP Conf. Proc.
,
2345
(
1
), p.
020003
.
17.
Sayer
,
A. H.
,
Al-Hussaini
,
H.
, and
Campbell
,
A. N.
,
2017
, “
An Analytical Estimation of Salt Concentration in the Upper and Lower Convective Zones of a Salinity Gradient Solar Pond With Either a Pond With Vertical Walls or Trapezoidal Cross Section
,”
Sol. Energy
,
158
, pp.
207
217
.
18.
Khalilian
,
M.
,
2018
, “
Experimental and Numerical Investigations of the Thermal Behavior of Small Solar Ponds With Wall Shading Effect
,”
Sol. Energy
,
159
, pp.
55
65
.
19.
Sayer
,
A. H.
,
Abbassi
,
A.
, and
Campbell
,
A. N.
,
2018
, “
Behaviour of a Salinity Gradient Solar Pond During Two Years and the Impact of Zonal Thickness Variation on Its Performance
,”
Appl. Therm. Eng.
,
130
, pp.
1191
1198
.
20.
Ould Dah
,
M. M.
,
Ouni
,
M.
,
Guizani
,
A.
, and
Belghith
,
A.
,
2010
, “
The Influence of the Heat Extraction Mode on the Performance and Stability of a Mini Solar Pond
,”
Appl. Energy
,
87
(
10
), pp.
3005
3010
.
21.
Date
,
A.
,
Yaakob
,
Y.
,
Date
,
A.
,
Krishnapillai
,
S.
, and
Akbarzadeh
,
A.
,
2013
, “
Heat Extraction From Non-Convective and Lower Convective Zones of the Solar Pond: A Transient Study
,”
Sol. Energy
,
97
, pp.
517
528
.
22.
El Mansouri
,
A.
,
Hasnaoui
,
M.
,
Amahmid
,
A.
, and
Dahani
,
Y.
,
2018
, “
Transient Theoretical Model for the Assessment of Three Heat Exchanger Designs in a Large-Scale Salt Gradient Solar Pond: Energy and Exergy Analysis
,”
Energy Convers. Manag.
,
167
, pp.
45
62
.
23.
Al-Juwayhel
,
F.
, and
El-Refaee
,
M.
,
1998
, “
Thermal Performance of a Combined Packed Bed-Solar Pond System—A Numerical Study
,”
Appl. Therm. Eng.
,
18
(
12
), pp.
1207
1223
.
24.
Colarossi
,
D.
, and
Principi
,
P.
,
2022
, “
Experimental Investigation and Optical Visualization of a Salt Gradient Solar Pond Integrated With PCM
,”
Sol. Energy Mater. Sol. Cells
,
234
, p.
111425
.
25.
Colarossi
,
D.
,
Pezzuto
,
M.
, and
Principi
,
P.
,
2022
, “
Effect of PCM Melting Temperature on Solar Ponds Performance: Design and Experimental Investigation
,”
Sol. Energy
,
242
, pp.
225
233
.
26.
Sayer
,
A. H.
,
Al-Hussaini
,
H.
, and
Campbell
,
A. N.
,
2018
, “
New Comprehensive Investigation on the Feasibility of the Gel Solar Pond, and a Comparison With the Salinity Gradient Solar Pond
,”
Appl. Therm. Eng.
,
130
, pp.
672
683
.
27.
Suárez
,
F.
,
Tyler
,
S. W.
, and
Childress
,
A. E.
,
2010
, “
A Fully Coupled, Transient Double-Diffusive Convective Model for Salt-Gradient Solar Ponds
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1718
1730
.
28.
Boudhiaf
,
R.
, and
Baccar
,
M.
,
2014
, “
Transient Hydrodynamic, Heat and Mass Transfer in a Salinity Gradient Solar Pond: A Numerical Study
,”
Energy Convers. Manag.
,
79
, pp.
568
580
.
29.
El Mansouri
,
A.
,
Hasnaoui
,
M.
,
Bennacer
,
R.
, and
Amahmid
,
A.
,
2017
, “
Transient Thermal Performances of a Salt Gradient Solar Pond Under Semi-Arid Moroccan Climate Using a 2D Double-Diffusive Convection Model
,”
Energy Convers. Manag.
,
151
, pp.
199
208
.
30.
El Mansouri
,
A.
,
Hasnaoui
,
M.
,
Amahmid
,
A.
, and
Bennacer
,
R.
,
2018
, “
Transient Modeling of a Salt Gradient Solar Pond Using a Hybrid Finite- Volume and Cascaded Lattice-Boltzmann Method: Thermal Characteristics and Stability Analysis
,”
Energy Convers. Manag.
,
158
(
Sept.
), pp.
416
429
.
31.
Rghif
,
Y.
,
Zeghmati
,
B.
, and
Bahraoui
,
F.
,
2020
, “
Soret and Dufour Effects on Thermal Storage and Storage Efficiency of a Salt Gradient Solar Pond
,”
5th International Conference on Renewable Energies for Developing Countries (REDEC)
,
Metz, France
,
June 29–30
, pp.
1
6
.
32.
Rghif
,
Y.
,
Zeghmati
,
B.
, and
Bahraoui
,
F.
,
2021
, “
Soret and Dufour Effects on Thermosolutal Convection Developed in a Salt Gradient Solar Pond
,”
Int. J. Therm. Sci.
,
161
, p.
106760
.
33.
Rghif
,
Y.
,
Zeghmati
,
B.
, and
Bahraoui
,
F.
,
2022
, “
Numerical Analysis of the Influence of Buoyancy Ratio and Dufour Parameter on Thermosolutal Convection in a Square Salt Gradient Solar Pond
,”
Fluid Dyn. Mater. Process.
,
18
(
5
), pp.
1319
1329
.
34.
Rghif
,
Y.
,
Zeghmati
,
B.
, and
Bahraoui
,
F.
,
2021
, “
Modeling the Influences of a Phase Change Material and the Dufour Effect on Thermal Performance of a Salt Gradient Solar Pond
,”
Int. J. Therm. Sci.
,
166
, p.
106979
.
35.
Angeli
,
C.
, and
Leonardi
,
E.
,
2004
, “
A One-Dimensional Numerical Study of the Salt Diffusion in a Salinity-Gradient Solar Pond
,”
Int. J. Heat Mass Transfer
,
47
(
1
), pp.
1
10
.
36.
Jaefarzadeh
,
M. R.
,
2004
, “
Thermal Behavior of a Small Salinity-Gradient Solar Pond With Wall Shading Effect
,”
Sol. Energy
,
77
(
3
), pp.
281
290
.
37.
Rabl
,
A.
, and
Nielsen
,
C. E.
,
1975
, “
Solar Ponds for Space Heating
,”
Sol. Energy
,
17
(
1
), pp.
1
12
.
38.
Cardoso
,
S.
,
Mourao
,
Z.
, and
Pinho
,
C.
,
2021
, “
Analysis of the Thermal Performance of an Uncovered 1-Hectare Solar Pond in Benguela, Angola
,”
Case Stud. Therm. Eng.
,
27
, p.
101254
.
39.
Atkinson
,
J. F.
, and
Harleman
,
D. R. F.
,
1983
, “
A Wind-Mixed Layer Model for Solar Ponds
,”
Sol. Energy
,
31
(
3
), pp.
243
259
.
40.
Amigo
,
J.
,
Meza
,
F.
, and
Suárez
,
F.
,
2017
, “
A Transient Model for Temperature Prediction in a Salt-Gradient Solar Pond and the Ground Beneath it
,”
Energy
,
132
, pp.
257
268
.
41.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Mcgraw-Hill Book Company
,
New York
.
42.
Nishimura
,
T.
,
Wakamatsu
,
M.
, and
Morega
,
A. M.
,
1998
, “
Oscillatory Double-Diffusive Convection in a Rectangular Enclosure With Combined Horizontal Temperature and Concentration Gradients
,”
Int. J. Heat Mass Transfer
,
41
(
11
), pp.
1601
1611
.
43.
Ganguly
,
S.
,
Date
,
A.
, and
Akbarzadeh
,
A.
,
2017
, “
Heat Recovery From Ground Below the Solar Pond
,”
Sol. Energy
,
155
, pp.
1254
1260
.
44.
Wang
,
Y. F.
, and
Akbarzadeh
,
A.
,
1983
, “
A Parametric Study on Solar Ponds
,”
Sol. Energy
,
30
(
6
), pp.
555
562
.
45.
Sayer
,
A. H.
,
Al-Dokheily
,
M. E.
,
Mahood
,
H. B.
,
Khadem
,
H. M.
, and
Campbell
,
A. N.
,
2022
, “
The Effect of a Liquid Cover on the Thermal Performance of a Salinity Gradient Solar Pond: An Experimental Study
,”
Energy Eng.
,
119
(
1
), pp.
17
34
.
You do not currently have access to this content.