Abstract

The behavior of a retired lithium-ion battery (LIB) from its first-life in an electric aircraft (EA) to its second-life in a solar photovoltaic (PV) system for a net-zero electricity residential home is studied. The first part of this study presents the design and sizing of a battery energy storage system (BESS), made from retired LIBs, to store a portion of the PV generation for a typical home in Ohio. The home is connected to the grid, but the net electricity usage from the grid in one year is zero. The purpose of the BESS is to peak shaving, power arbitrage, reduce the home dependency on the grid, and increase the economic benefits. The sizing is determined based on the hourly data of the PV system generation, ambient temperature, irradiation, and home demand electricity. In the second part of this study, the retired LIB degradation rate and its remaining useful life in the BESS are estimated using an adopted empirical LIB model. The model includes the capacity-fade for both first-life and second-life of the LIB under various duty cycles. It is shown that the retired LIB from its first-life is still suitable to be used in the PV grid-tied battery (PVGB) system for another 10 years. The results of this study can potentially reduce the LIB cost for electric vehicles (EVs) and EAs because the retired LIBs from these applications still have value to serve for other applications such as PVGB systems for residential homes.

References

1.
Kjaer
,
S. B.
,
Pedersen
,
J. K.
, and
Blaabjerg
,
F.
,
2005
, “
A Review of Single-Phase Grid Connected Inverters for Photovoltaic Modules
,”
IEEE Trans. Ind. Appl.
,
41
(
5
), pp.
1292
1306
.
2.
Kanchev
,
H.
,
Lu
,
D.
,
Colas
,
F.
,
Lazarov
,
V.
, and
Francois
,
B.
,
2011
, “
Energy Management and Operational Planning of a Microgrid With a PV-Based Active Generator for Smart Grid Applications
,”
IEEE Trans. Ind. Electron.
,
58
(
10
), pp.
4583
4592
.
3.
Alhadri
,
M.
,
Alatawi
,
I.
,
Alshammari
,
F.
,
Haleem
,
M. A.
,
Heniegal
,
A. M. A.
,
Abdelaziz
,
G. B.
,
Ahmed
,
M. M. Z.
,
Alqsair
,
U. F.
,
Kabeel
,
A. E.
, and
Elashmawy
,
M.
,
2022
, “
Design of a Low-Cost Parabolic Concentrator Solar Tracking System: Tubular Solar Still Application
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051006
.
4.
Aldarabseh
,
S. M.
, and
Abdallah
,
S.
,
2022
, “
Experimental and Numerical Investigation of a Semispherical Solar Still, Chamber Stepwise Basin, With and Without a Photovoltaic-Powered Electrical Heater
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
031006
.
5.
Zhou
,
J.
,
Yu
,
T.
, and
Lei
,
B.
,
2022
, “
Experimental Study on the Influence of Solar Heat Gain on the Thermal Performance of Hollow Ventilated Interior Wall
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
031001
.
6.
Awasthi
,
K.
,
Reddy
,
D. S.
, and
Khan
,
M. K.
,
2022
, “
A Novel High Concentration Fresnel Lens as a Solar Concentrator
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011006
.
7.
Bentouba
,
S.
, and
Bourouis
,
M.
,
2021
, “
Feasibility Study and Environmental Impact of Using a Photovoltaic System to Secure Relays of Mobile Communication Systems
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
031002
.
8.
Kumar
,
L.
,
Hasanuzzaman
,
M.
, and
Rahim
,
N. A.
,
2022
, “
Real-Time Experimental Performance Assessment of a Photovoltaic Thermal System Cascaded With Flat Plate and Heat Pipe Evacuated Tube Collector
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011004
.
9.
Denholm
,
P.
, and
Margolis
,
R. M.
,
2007
, “
Evaluating the Limits of Solar Photovoltaics (PV) in Electric Power Systems Utilizing Energy Storage and Other Enabling Technologies
,”
Energy Policy
,
35
(
9
), pp.
4424
4433
.
10.
Symeonidou
,
M.
,
Zioga
,
C.
, and
Papadopoulos
,
A.
,
2021
, “
Life Cycle Cost Optimization Analysis of Battery Storage System for Residential Photovoltaic Panels
,”
J. Clean. Prod.
,
309
, p.
127234
.
11.
Lopes
,
J. A. P.
,
Moreira
,
C. L.
, and
Madureira
,
A. G.
,
2006
, “
Defining Control Strategies for MicroGrids Islanded Operation
,”
IEEE Trans. Power Syst.
,
21
(
2
), pp.
916
924
.
12.
Gaztañaga
,
H.
,
Landaluze
,
J.
,
Etxeberria-Otadui
,
I.
,
Padrós
,
A.
,
Berazaluce
,
I.
, and
Cuesta
,
D.
,
2013
, “
Enhanced Experimental PV Plant Grid Integration With a MW Lithium-Ion Energy Storage System
,”
Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE)
,
Denver, CO
,
Sept. 15–19
, pp.
1324
1329
.
13.
Ru
,
Y.
,
Kleissl
,
J.
, and
Martinez
,
S.
,
2013
, “
Storage Size Determination for Grid-Connected Photovoltaic Systems
,”
IEEE Trans. Sustain. Energy
,
4
(
1
), pp.
68
81
.
14.
Borowy
,
B. S.
, and
Salameh
,
Z.
,
1996
, “
Methodology for Optimally Sizing the Combination of a Battery Bank and PV Array in a Wind/PV Hybrid System
,”
IEEE Trans. Energy Convers.
,
11
(
2
), pp.
367
375
.
15.
Li
,
J.
,
2019
, “
Optimal Sizing of Grid-Connected Photovoltaic Battery Systems for Residential Houses in Australia
,”
Renew. Energy
,
136
, pp.
1245
1254
.
16.
Alam
,
M.
,
Kumar
,
K.
, and
Dutta
,
V.
,
2021
, “
Analysis of Solar Photovoltaic-Battery System for Off-Grid DC Load Application
,”
Int. Trans. Electr. Energ. Syst.
,
31
(
1
), pp.
2050
7038
.
17.
Dufo-López
,
R.
,
Cortés-Arcos
,
T.
,
Artal-Sevil
,
J. S.
, and
Bernal-Agustín
,
J. L.
,
2021
, “
Comparison of Lead-Acid and Li-Ion Batteries Lifetime Prediction Models in Stand-Alone Photovoltaic Systems
,”
Appl. Sci.
,
11
(
3
), p.
1099
.
18.
Belt
,
J. R.
,
2010
, “
Battery Test Manual for Plug-In Hybrid Electric Vehicles
,” United States. 10.2172/991910
19.
Alhadri
,
M.
,
Esmaeeli
,
R.
,
Mohammed
,
A. H.
,
Zakri
,
W.
,
Hashemi
,
S. R.
,
Aliniagerdroudbari
,
H.
,
Barua
,
H.
, and
Farhad
,
S.
,
2018
, “
Studying the Degradation of Lithium-Ion Batteries Using an Empirical Model for Aircraft Applications
,”
ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum
,
Lake Buena Vista, FL
,
June 24–28
, p. V001T06A023.
20.
Alhadri
,
M.
,
Mohammed
,
A. H.
, and
Farhad
,
S.
,
2018
, “
Comparison of Duty-Cycle of a Battery Cell for Electric Aircraft and Electric Vehicle Applications
,” SAE Technical Paper 2018-01-0666. 10.4271/2018-01-0666
21.
Samadani
,
E.
,
Farhad
,
S.
,
Scott
,
W.
,
Mastali
,
M.
,
Gimenez
,
L. E.
,
Fowler
,
M.
, and
Fraser
,
R. A.
,
2015
, “
Empirical Modeling of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy Tests
,”
Electrochim. Acta
,
160
, pp.
169
177
.
22.
Peters
,
I. M.
,
Breyer
,
C.
,
Jaffer
,
S. A.
,
Kurtz
,
S.
,
Reindl
,
T.
,
Sinton
,
R.
, and
Vetter
,
M.
,
2021
, “
The Role of Batteries in Meeting the PV Terawatt Challenge
,”
Joule
,
5
(
6
), pp.
1353
1370
.
23.
Elliott
,
M.
,
Swan
,
L.
,
Dubarry
,
M.
, and
Baure
,
G.
,
2020
, “
Degradation of Electric Vehicle Lithium-Ion Batteries in Electricity Grid Services
,”
J. Energy Storage
,
32
, p.
101873
.
24.
Nazari
,
S.
,
Borrelli
,
F.
, and
Stefanopoulou
,
A.
,
2021
, “
Electric Vehicles for Smart Buildings: A Survey on Applications, Energy Management Methods, and Battery Degradation
,”
Proc. IEEE
,
109
(
6
), pp.
1128
1144
.
25.
Lacap
,
J.
,
Park
,
J.
, and
Beslow
,
L.
,
2021
, “
Development and Demonstration of Microgrid System Utilizing Second-Life Electric Vehicle Batteries
,”
J. Energy Storage
,
41
, p.
102837
.
26.
Gao
,
Y.
,
Cai
,
Y.
, and
Liu
,
C.
,
2022
, “
Annual Operating Characteristics Analysis of Photovoltaic-Energy Storage Microgrid Based on Retired Lithium Iron Phosphate Batteries
,”
J. Energy Storage
,
45
, p.
103769
.
27.
Lai
,
X.
,
Huang
,
Y.
,
Gu
,
H.
,
Deng
,
C.
,
Han
,
X.
,
Feng
,
X.
, and
Zheng
,
Y.
,
2021
, “
Turning Waste Into Wealth: A Systematic Review on Echelon Utilization and Material Recycling of Retired Lithium-Ion Batteries
,”
Energy Storage Mater.
,
40
, pp.
96
123
.
28.
Liu
,
K.
,
Wei
,
Z.
,
Zhang
,
C.
,
Shang
,
Y.
,
Teodorescu
,
R.
, and
Han
,
Q. L.
,
2022
, “
Towards Long Lifetime Battery: AI-Based Manufacturing and Management
,”
IEEE/CAA J. Autom. Sin.
,
9
(
7
), pp.
1139
1165
.
29.
Liu
,
J.
,
Wang
,
M.
,
Peng
,
J.
,
Chen
,
X.
,
Cao
,
S.
, and
Yang
,
H.
,
2020
, “
Techno-Economic Design Optimization of Hybrid Renewable Energy Applications for High-Rise Residential Buildings
,”
Energy Convers. Manage.
,
213
, p.
112868
.
30.
Yang
,
J.
,
Gu
,
F.
, and
Guo
,
J.
,
2022
, “
Environmental Feasibility of Secondary Use of Electric Vehicle Lithium-Ion Batteries in Communication Base Stations
,”
Resour. Conserv. Recycl.
,
156
, p.
104713
.
31.
Zhu
,
J.
,
Mathews
,
I.
,
Ren
,
D.
,
Li
,
W.
,
Cogswell
,
D.
,
Xing
,
B.
,
Sedlatschek
,
T.
, et al
,
2021
, “
End-of-Life or Second-Life Options for Retired Electric Vehicle Batteries
,”
Cell Rep. Phys. Sci.
,
2
(
8
), p.
100537
.
32.
Adeyemo
,
A.
, and
Amusan
,
O.
,
2022
, “
Modelling and Multi-Objective Optimization of Hybrid Energy Storage Solution for Photovoltaic Powered Off-Grid Net Zero Energy Building
,”
J. Energy Storage
,
55
(
Part A
), p.
105273
.
33.
Bhatt
,
A.
,
Ongsakul
,
W.
, and
Madhu
,
M. N.
,
2022
, “
Optimal Techno-Economic Feasibility Study of Net-Zero Carbon Emission Microgrid Integrating Second-Life Battery Energy Storage System
,”
Energy Convers. Manage.
,
266
, p.
115825
.
34.
Wu
,
F.
,
Li
,
L.
,
Crandon
,
L.
,
Cao
,
Y.
,
Cheng
,
F.
,
Hicks
,
A.
,
Zeng
,
E.
, and
You
,
J.
,
2022
, “
Environmental Hotspots and Greenhouse Gas Reduction Potential for Different Lithium-Ion Battery Recovery Strategies
,”
J. Clean. Prod.
,
339
, p.
130697
.
35.
Weniger
,
J.
,
Tjaden
,
T.
, and
Quaschning
,
V.
,
2014
, “
Sizing of Residential PV Battery Systems
,”
Energy Procedia
,
46
, pp.
78
87
.
36.
Farhad
,
S.
, and
Nazari
,
A.
,
2019
, “
Introducing the Energy Efficiency Map of Lithium-Ion Batteries
,”
Int. J. Energy Res.
,
43
(
2
), pp.
931
944
.
37.
Samadani
,
E.
,
Mastali
,
M.
,
Farhad
,
S.
,
Fraser
,
R. A.
, and
Fowler
,
M.
,
2016
, “
Li-Ion Battery Performance and Degradation in Electric Vehicles Under Different Usage Scenarios
,”
Int. J. Energy Res.
,
40
(
3
), pp.
379
392
.
38.
Wu
,
Y.
,
Liu
,
Z.
,
Liu
,
J.
,
Xiao
,
H.
,
Liu
,
R.
, and
Zhang
,
L.
,
2022
, “
Optimal Battery Capacity of Grid-Connected PV-Battery Systems Considering Battery Degradation
,”
Renew. Energy
,
181
, pp.
10
23
.
39.
Smith
,
K.
,
Saxon
,
A.
,
Keyser
,
M.
,
Lundstrom
,
B.
,
Cao
,
Z.
, and
Roc
,
A.
,
2017
, “
Life Prediction Model for Grid-Connected Li-Ion Battery Energy Storage System
,”
IEEE, American Control Conference
,
Seattle, WA
,
May 24–26
, pp.
2378
5861
.
40.
Neubauer
,
J.
,
2014
, “
Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation
,”
Technical Report
,
United States
, .
41.
Alhadri
,
M.
,
Zakri
,
W.
,
Esmaeeli
,
R.
,
Mohammed
,
A. H.
,
Hashemi
,
S. R.
,
Barua
,
H.
,
Aliniagerdroudbari
,
H.
, and
Farhad
,
S.
,
2019
, “
Analysis of Second-Life of a Lithium-Ion Battery in an Energy Storage System Connected to a Wind Turbine
,”
IEEE Power and Energy Conference at Illinois (PECI)
,
Champaign, IL
,
Feb. 28–Mar. 1
.
42.
Al-Shammari
,
H.
, and
Farhad
,
S.
,
2022
, “
Performance of Cathodes Fabricated From Mixture of Active Materials Obtained From Recycled Lithium-Ion Batteries
,”
Energies
,
15
(
2
), p.
410
.
43.
Al-Shammari
,
H.
, and
Farhad
,
S.
,
2020
, “
Regeneration of Cathode Mixture Active Materials Obtained From Recycling Lithium Ion Batteries
,”
SAE Technical Paper
,
Virtual Conference
,
June
.
44.
Farhad
,
S.
,
Gupta
,
R. K.
,
Yasin
,
G.
, and
Nguyen
,
T. A.
,
2022
,
Nanotechnology for Battery Recycling, Remanufacturing, and Reusing
,
Elsevier
,
New York
.
45.
Kay
,
I.
,
Farhad
,
S.
,
Mahajan
,
A.
,
Esmaeeli
,
R.
, and
Hashemi
,
S. R.
,
2022
, “
Robotic Disassembly of Electric Vehicles’ Battery Modules for Recycling
,”
Energies
,
15
(
13
), p.
4856
.
46.
Al-Shammari
,
H.
, and
Farhad
,
S.
,
2021
, “
Heavy Liquids for Rapid Separation of Cathode and Anode Active Materials From Recycled Lithium-Ion Batteries
,”
Resour. Conserv. Recycl.
,
174
, p.
105749
.
You do not currently have access to this content.