Abstract

solarpilot is a software package that generates solar field layouts and characterizes the optical performance of concentrating solar power (CSP) tower systems. solarpilot was developed by the National Renewable Energy Laboratory (NREL) as a stand-alone desktop application but has also been incorporated into NREL’s System Advisor Model (SAM) in a simplified format. Prior means for user interaction with solarpilot have included the application’s graphical interface, the SAM routines with limited configurability, and through a built-in scripting language called “LK.” This article presents a new, full-featured, python-based application programmable interface (API) for solarpilot, which we hereafter refer to as CoPylot. CoPylot enables python users to perform detailed CSP tower analysis utilizing either the Hermite expansion technique (analytical) or the SolTrace ray-tracing engine. CoPylot’s enables CSP researchers to perform analysis that was previously not possible through solarpilot’s existing interfaces. This article discusses the capabilities of CoPylot and presents a use case wherein we populate a model that obtains optimal solar field aiming strategies.

References

1.
Wagner
,
M. J.
, and
Wendelin
,
T.
,
2018
, “
SolarPILOT: A Power Tower Solar Field Layout and Characterization Tool
,”
Sol. Energy
,
171
, pp.
185
196
.
2.
Ho
,
C. K.
,
2008
, “
Software and Codes for Analysis of Concentrating Solar Power Technologies
,”
Sandia National Laboratories
,
Albuquerque, NM
,
Report No. SAND2008-8053, Technical Report
.
3.
Li
,
L.
,
Coventry
,
J.
,
Bader
,
R.
,
Pye
,
J.
, and
Lipiński
,
W.
,
2016
, “
Optics of Solar Central Receiver Systems: A Review
,”
Opt. Express
,
24
(
14
), pp.
A985
A1007
.
4.
Blanco
,
M. J.
,
Amieva
,
J. M.
, and
Mancillas
,
A.
,
2005
, “
The Tonatiuh Software Development Project: An Open Source Approach to the Simulation of Solar Concentrating Systems
,”
ASME 2005 International Mechanical Engineering Congress and Exposition. Computers and Information in Engineering
,
Orlando, FL
,
Nov. 5–11
, pp.
157
164
.
5.
Delatorre, J., Baud, G., Bézian, J. J., Blanco, S., Caliot, C., Cornet, J. F., Coustet, C., Dauchet, J., El Hafi, M., Eymet, V., and Fournier
,
R.
2014
, “
Monte Carlo Advances and Concentrated Solar Applications
,”
Sol. Energy
,
103
, pp.
653
681
.
6.
Potter
,
D. F.
,
Kim
,
J. -S.
,
Khassapov
,
A.
,
Pascual
,
R.
,
Hetherton
,
L.
, and
Zhang
,
Z.
,
2018
, “
Heliosim: An Integrated Model for the Optimisation and Simulation of Central Receiver CSP Facilities
,”
SolarPACES 2017: International Conference on Concentrating Solar Power and Chemical Energy Systems
, Vol.
2033
,
Santiago, Chile
,
Sept. 26–29
,
AIP Publishing LLC
, Paper No. 210011.
7.
Izygon
,
M.
,
Armstrong
,
P.
,
Nilsson
,
C.
, and
Vu
,
N.
,
2011
, “
TieSOL—A GPU-Based Suite of Software for Central Receiver Solar Power Plants
,”
SolarPACES 2011: International Conference on Concentrating Solar Power and Chemical Energy Systems
,
Granada, Spain
,
Sept. 20–23
, pp.
1
8
.
8.
Izygon
,
M.
,
McMurtrie
,
K.
, and
Vu
,
N.
,
2018
, “
Particle Swarm Optimization of the Layout of a Heliostat Field
,”
SolarPACES 2017: International Conference on Concentrating Solar Power and Chemical Energy Systems
, Vol.
2033
,
Santiago, Chile
,
Sept. 26–29
,
AIP Publishing LLC
, Paper No. 040018.
9.
Lipps
,
F.
, and
Vant-Hull
,
L. L.
,
1978
, “
A Cellwise Method for the Optimization of Large Central Receiver Systems
,”
Sol. Energy
,
20
(
6
), pp.
505
516
.
10.
Dellin
,
T. A.
, and
Fish
,
M. J.
,
1979
, “User’s Manual for DELSOL: A Computer Code for Calculating the Optical Performance, Field Layout, and Optimal System Design for Solar Central Receiver Plants,”
Sandia National Lab. (SNL-CA)
,
Livermore, CA
, Report No. SAND79-8215, Technical Report.
11.
Vittitoe
,
C.
, and
Biggs
,
F.
,
1981
, “A User’s Guide to HELIOS: A Computer Program for Modeling the Optical Behavior of Reflecting Solar Concentrators. Part I. Introduction and Code Input,”
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND81-1180, Technical Report.
12.
Schwarzbözl
,
P.
,
Pitz-Paal
,
R.
, and
Schmitz
,
M.
,
2009
, “
Visual HFLCAL—A Software Tool for Layout and Optimisation of Heliostat Fields
,”
SolarPACES 2009: International Conference on Concentrating Solar Power and Chemical Energy Systems
,
T
,
Mancini
, and
R
,
Pitz-Paal
, eds.,
Berlin, Germany
,
Sept. 15–18
, pp.
1
8
. https://elib.dlr.de/60308/
13.
He
,
C.
,
Zhao
,
Y.
, and
Feng
,
J.
,
2019
, “
An Improved Flux Density Distribution Model for a Flat Heliostat (iHFLCAL) Compared With HFLCAL
,”
Energy
,
189
, p.
116239
.
14.
Wang
,
Y.
,
Potter
,
D.
,
Asselineau
,
C.-A.
,
Corsi
,
C.
,
Wagner
,
M.
,
Caliot
,
C.
,
Piaud
,
B.
,
Blanco
,
M.
,
Kim
,
J.-S.
, and
Pye
,
J.
,
2020
, “
Verification of Optical Modelling of Sunshape and Surface Slope Error for Concentrating Solar Power Systems
,”
Sol. Energy
,
195
, pp.
461
474
.
15.
Gebreiter
,
D.
,
Weinrebe
,
G.
,
Wöhrbach
,
M.
,
Arbes
,
F.
,
Gross
,
F.
, and
Landman
,
W.
,
2019
, “
sbpRAY—A Fast and Versatile Tool for the Simulation of Large Scale CSP Plants
,”
SolarPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems
, Vol.
2126
,
Casablanca, Morocco
,
Oct. 2–5
, AIP Publishing LLC, Paper No. 170004.
16.
Wang
,
Y.
,
Asselineau
,
C.-A.
,
Coventry
,
J.
, and
Pye
,
J.
,
2016
, “
Optical Performance of Bladed Receivers for CSP Systems
,”
ASME 2016 10th International Conference on Energy Sustainability Collocated With the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
, Vol.
1
,
Charlotte, NC
,
June 26–30
,
American Society of Mechanical Engineers
, p.
V001T04A026
, Paper No. ES2016-59693.
17.
Cardona
,
G.
, and
Pujol-Nadal
,
R.
,
2020, OTSun
, “
a Python Package for the Optical Analysis of Solar-Thermal Collectors and Photovoltaic Cells With Arbitrary Geometry
,”
PLoS One
,
15
(
10
), pp.
1
15
.
18.
Grigoriev
,
V.
,
Milidonis
,
K.
,
Constantinou
,
M.
,
Corsi
,
C.
,
Pye
,
J.
, and
Blanco
,
M.
,
2021
, “
Optimal Sizing of Cylindrical Receivers for Surround Heliostat Fields Using FLUXTRACER
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061007
.
19.
Ortega
,
J. I.
,
Burgaleta
,
J. I.
, and
Téllez
,
F. M.
,
2008
, “
Central Receiver System Solar Power Plant Using Molten Salt as Heat Transfer Fluid
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
024501
.
20.
Wendelin
,
T.
,
2009
, “
SolTRACE: A New Optical Modeling Tool for Concentrating Solar Optics
,”
ASME 2003 International Solar Energy Conference
, Vol.
36762
,
Kohala Coast, HI
,
Mar. 15–18
, pp.
253
260
, Paper No. ISEC2003-44090.
21.
Python Software Foundation
,
2021
, “
Python Language Reference (Version 3.9.1)
,” https://docs.python.org/3.9/reference/, Accessed March 4, 2022.
22.
Blair
,
N. J.
,
DiOrio
,
N. A.
,
Freeman
,
J. M.
,
Gilman
,
P.
,
Janzou
,
S.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2018
, “
System Advisor Model (SAM) General Description (Version 2017.9.5)
,”
National Renewable Energy Lab. (NREL)
,
Golden, CO
, Report No. NREL/TP–6A20–70414, Technical Report.
23.
McKinney
,
W.
,
2010
, “
Data Structures for Statistical Computing in Python
,”
Proceedings of the 9th Python in Science Conference
, Vol.
445
,
Austin, TX
,
June 10
, pp.
51
56
, Paper No. 1.
24.
Jolly
,
K.
,
2018
,
Hands-On Data Visualization With Bokeh: Interactive Web Plotting for Python Using Bokeh
, 1st ed.,
Packt Publishing Ltd
., Birmingham, UK.
25.
Zolan
,
A.
,
Hamilton
,
W.
,
Liaqat
,
K.
, and
Wagner
,
M.
,
2021
, “
HALOS (Heliostat Aimpoint and Layout Optimization Software)
,” https://github.com/NREL/HALOS, Accessed March 4, 2022.
26.
Ashley
,
T.
,
Carrizosa
,
E.
, and
Fernández-Cara
,
E.
,
2017
, “
Optimisation of Aiming Strategies in Solar Power Tower Plants
,”
Energy
,
137
, pp.
285
291
.
27.
Kuhnke
,
S.
,
Richter
,
P.
,
Kepp
,
F.
,
Cumpston
,
J.
,
Koster
,
A. M.
, and
Büsing
,
C.
,
2020
, “
Robust Optimal Aiming Strategies in Central Receiver Systems
,”
Renewable Energy
,
152
, pp.
198
207
.
28.
Hart
,
W. E.
,
Laird
,
C. D.
,
Watson
,
J.-P.
,
Woodruff
,
D. L.
,
Hackebeil
,
G. A.
,
Nicholson
,
B. L.
, and
Siirola
,
J. D.
,
2017
,
Pyomo–Optimization Modeling in Python
, 2nd ed., Vol.
67
,
Springer Science & Business Media
,
Berlin, Germany
.
29.
Zolan
,
A.
,
Hamilton
,
W.
,
Wagner
,
M.
, and
Liaqat
,
K.
,
2021
, “Solar Field Layout and Aimpoint Strategy Optimization,”
National Renewable Energy Lab. (NREL)
,
Golden, CO
, Florida State University, Tallahassee, FL, Report No. NREL/TP–5700-80596, Technical Report.
30.
Hart
,
W. E.
,
Watson
,
J.-P.
, and
Woodruff
,
D. L.
,
2011
, “
Pyomo: Modeling and Solving Mathematical Programs in Python
,”
Math. Program. Comput.
,
3
(
3
), pp.
219
260
.
You do not currently have access to this content.