Abstract

An experimental investigation was conducted to demonstrate the effects of materials on the heat transfer characteristics of R410A during evaporation and condensation inside two horizontal plain tubes with the same inner diameter of 6 mm, but with two different materials of aluminum and stainless steel. The variation of vapor quality for the test section was kept in the range of 0.20.9, while mass velocities were allowed to vary from 100 to 400 kg/m2/s1. First, a series of single-phase and repetitive experiments were conducted to verify the accuracy and reliability of the test rig. Results of the evaporation experiments show that the plain aluminum tube performs best for all tested mass velocities. Several different correlations were employed to predict the present data, and their predictive ability was compared and discussed. Results indicate that the Liu and Winterton correlation could accurately predict the present results except for low mass velocities. Roughness effects were accounted for employing a correction factor. The larger roughness of the stainless steel tube was supposed to make the stainless steel tube perform better if roughness effects were accounted for, so the better performance of the aluminum tube was mainly attributed to the material effects. The pool boiling heat transfer as predicted by the VDI model was compared with the experimental results, and more obvious material effects have been found for pool boiling conditions. The minor differences between the two tubes in this case may be explained by the nucleate boiling suppression and incomplete wetting. For the condensation experiments, little difference was found between the two tested tubes, which means that the material and roughness effects may have had little influence on the thermal performance during condensation.

References

1.
Berenson
,
P. J.
,
1962
, “
Experiments on Pool-Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
5
(
10
), pp.
985
999
. 10.1016/0017-9310(62)90079-0
2.
Ma
,
K.-T.
, and
Pan
,
C.
,
1999
, “
The Effect of Heated Wall Thickness and Materials on Nucleate Boiling at High Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
26
(
8
), pp.
1103
1114
. 10.1016/S0735-1933(99)00101-3
3.
Nagarajan
,
R.
, and
Adelman
,
M.
,
1970
, “
An Experimental Investigation of the Influence of the Grain Size of the Metal Surface on Pool Boiling Heat Transfer
,”
Canad. J. Chem. Eng.
,
48
(
1
), pp.
39
46
. 10.1002/cjce.5450480108
4.
Bliss
,
F. E.
,
Hsu
,
S. T.
, and
Crawford
,
M.
,
1969
, “
An Investigation Into the Effects of Various Platings on the Film Coefficient During Nucleate Boiling From Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
12
(
9
), pp.
1061
1072
. 10.1016/0017-9310(69)90115-X
5.
Ribatski
,
G.
, and
Jabardo
,
J. M. S.
,
2003
, “
Experimental Study of Nucleate Boiling of Halocarbon Refrigerants on Cylindrical Surfaces
,”
Int. J. Heat Mass Transfer
,
46
(
23
), pp.
4439
4451
. 10.1016/S0017-9310(03)00252-7
6.
Hosseini
,
R.
,
Gholaminejad
,
A.
,
Nabil
,
M.
, and
Samadinia
,
M. H.
,
2011
, “
Concerning the Effect of Surface Material on Nucleate Boiling Heat Transfer of R-113
,”
J. Electron. Cooling Thermal Control
,
1
(
2
), pp.
22
27
. 10.4236/jectc.2011.12003
7.
Pioro
,
I. L.
,
Rohsenow
,
W.
, and
Doerffer
,
S. S.
,
2004
, “
Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects of Boiling Surface
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5033
5044
. 10.1016/j.ijheatmasstransfer.2004.06.019
8.
Benjamin
,
R. J.
, and
Balakrishnan
,
A. R.
,
1996
, “
Nucleate Pool Boiling Heat Transfer of Pure Liquids at Low to Moderate Heat Fluxes
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2495
2504
. 10.1016/0017-9310(95)00320-7
9.
Benjamin
,
R. J.
, and
Balakrishnan
,
A. R.
,
1997
, “
Nucleation Site Density in Pool Boiling of Saturated Pure Liquids: Effect of Surface Microroughness and Surface and Liquid Physical Properties
,”
Exp. Therm. Fluid. Sci.
,
15
(
1
), pp.
32
42
. 10.1016/S0894-1777(96)00168-9
10.
Roy Chowdhury
,
S. K.
, and
Winterton
,
R. H. S.
,
1985
, “
Surface Effects in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
28
(
10
), pp.
1881
1889
. 10.1016/0017-9310(85)90210-8
11.
Luke
,
A. J. H.
,
2009
, “
Preparation and Analysis of Different Roughness Structures for Evaporator Tubes
,”
Heat Mass Transfer
,
45
(
7
), pp.
909
917
. 10.1007/s00231-009-0481-1
12.
Chatpun
,
S.
,
Watanabe
,
M.
, and
Shoji
,
M.
,
2004
, “
Experimental Study on Characteristics of Nucleate Pool Boiling by the Effects of Cavity Arrangement
,”
Exp. Therm. Fluid. Sci.
,
29
(
1
), pp.
33
40
. 10.1016/j.expthermflusci.2004.01.007
13.
Hsu
,
S. T.
, and
Schmidt
,
F. W.
,
1961
, “
Measured Variations in Local Surface Temperatures in Pool Boiling of Water
,”
ASME J. Heat Transfer
,
83
(
3
), pp.
254
260
. 10.1115/1.3682252
14.
Tachibana
,
F.
,
Akiyama
,
M.
, and
Kawamura
,
H.
,
1967
, “
Non-Hydrodynamic Aspects of Pool Boiling Burnout
,”
J. Nucl. Sci. Technol.
,
4
(
3
), pp.
121
130
. 10.1080/18811248.1967.9732708
15.
Guglielmini
,
G.
, and
Nannei
,
E.
,
1976
, “
On the Effect of Heating Wall Thickness on Pool Boiling Burnout
,”
Int. J. Heat Mass Transfer
,
19
(
9
), pp.
1073
1075
. 10.1016/0017-9310(76)90191-5
16.
Pike-Wilson
,
E. A.
, and
Karayiannis
,
T. G.
,
2014
, “
Flow Boiling of R245fa in 1.1 mm Diameter Stainless Steel, Brass and Copper Tubes
,”
Exp. Therm. Fluid. Sci.
,
59
, pp.
166
183
. 10.1016/j.expthermflusci.2014.02.024
17.
Zou
,
L.
, and
Jones
,
B. G.
,
2013
, “
Heating Surface Material’s Effect on Subcooled Flow Boiling Heat Transfer of R134a
,”
Int. J. Heat Mass Transfer
,
58
(
1
), pp.
168
174
. 10.1016/j.ijheatmasstransfer.2012.11.036
18.
Jones
,
B. J.
, and
Garimella
,
S. V.
,
2009
, “
Surface Roughness Effects on Flow Boiling in Microchannels
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
4
), pp.
041007
. 10.1115/1.4001804
19.
Paz
,
M. C.
,
Conde
,
M.
,
Suárez
,
E.
, and
Concheiro
,
M.
,
2015
, “
On the Effect of Surface Roughness and Material on the Subcooled Flow Boiling of Water: Experimental Study and Global Correlation
,”
Exp. Therm. Fluid. Sci.
,
64
, pp.
114
124
. 10.1016/j.expthermflusci.2015.02.016
20.
Kandlikar
,
S.
, and
Spiesman
,
P. H.
,
1998
, “
Effects of Surface Finish on Flow Boiling Heat Transfer
,”
Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition
,
San Francisco, CA
,
August
, pp.
157
163
.
21.
Yu
,
J.
,
Momoki
,
S.
, and
Koyama
,
S.
,
1999
, “
Experimental Study of Surface Effect on Flow Boiling Heat Transfer in Horizontal Smooth Tubes
,”
Int. J. Heat Mass Transfer
,
42
(
10
), pp.
1909
1918
. 10.1016/S0017-9310(98)00279-8
22.
Li
,
G.-Q.
,
Wu
,
Z.
,
Li
,
W.
,
Wang
,
Z.-K.
,
Wang
,
X.
,
Li
,
H.-X.
, and
Yao
,
S.-C.
,
2012
, “
Experimental Investigation of Condensation in Micro-Fin Tubes of Different Geometries
,”
Exp. Therm. Fluid. Sci.
,
37
, pp.
19
28
. 10.1016/j.expthermflusci.2011.09.008
23.
Li
,
W.
,
Tang
,
W.
,
Chen
,
J.
,
Zhu
,
H.
,
Kukulka
,
D. J.
,
He
,
Y.
,
Sun
,
Z.
,
Du
,
J.
, and
Zhang
,
B.
,
2018
, “
Convective Condensation in Three Enhanced Tubes With Different Surface Modifications
,”
Exp. Therm. Fluid. Sci.
,
97
, pp.
79
88
. 10.1016/j.expthermflusci.2018.04.011
24.
Tang
,
W.
,
Kukulka
,
D. J.
,
Li
,
W.
, and
Smith
,
R.
,
2020
, “
Comparison of the Evaporation and Condensation Heat Transfer Coefficients on the External Surface of Tubes in the Annulus of a Tube-in-Tube Heat Exchanger
,”
Energies
,
13
(
4
), p.
952
. 10.3390/en13040952
25.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flows
,”
NASA Sti/recon Tech. Rep. A
,
75
(
2
), pp.
8
16
.
26.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
. 10.1016/S0065-2717(08)70153-9
27.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
28.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
Mclinden
,
M. O.
,
2010
, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP,” v. 9.1,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
29.
Wojtan
,
L.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
,
2005
, “
Investigation of Flow Boiling in Horizontal Tubes: Part I—A New Diabatic Two-Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2955
2969
. 10.1016/j.ijheatmasstransfer.2004.12.012
30.
Cavallini
,
A.
,
Col
,
D. D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
,
Zilio
,
C.
, and
Censi
,
G.
,
2006
, “
Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design
,”
Heat Transfer Eng.
,
27
(
8
), pp.
31
38
. 10.1080/01457630600793970
31.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
. 10.1016/0017-9310(86)90205-X
32.
Liu
,
Z.
, and
Winterton
,
R. H. S.
,
1991
, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tubes and Annuli, Based on a Nucleate Pool Boiling Equation
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2759
2766
. 10.1016/0017-9310(91)90234-6
33.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
Ind. Eng. Chem. Process Design Dev.
,
5
(
3
), pp.
322
329
. 10.1021/i260019a023
34.
Cooper
,
M. G
.,
1984
, “
Saturation Nucleate Pool Boiling—A Simple Correlation
,”
1st UK National Heat Transfer Conference on the Institution of Chemical Engineers Symposium Series
,
Leeds, UK
,
July
, pp.
785
793
.
35.
Gorenflo
,
D.
,
Baumhögger
,
E.
,
Herres
,
G.
, and
Kotthoff
,
S.
,
2014
, “
Prediction Methods for Pool Boiling Heat Transfer: A State-of-the-Art Review
,”
Int. J. Refrig.
,
43
, pp.
203
226
. 10.1016/j.ijrefrig.2013.12.012
36.
Stephan
,
P.
,
Martin
,
H.
,
Kabelac
,
S.
,
Mewes
,
D.
,
Kind
,
M.
, and
Schaber
,
K.
,
2010
,
VDI Heat Atlas
, 2nd ed.,
VDI-Verlag GmbH
,
Düsseldorf, Germany
.
37.
Thome
,
J. R.
, and
Shakir
,
S.
,
1987
, “
A New Correlation for Nucleate Pool Boiling of Aqueous Mixtures
,”
American Institute of Chemical Engineers; in Proceedings of the 24th National Heat Transfer Conference and Exhibition, R. W. Lyczkowski, ed.
,
Pittsburgh, PA
,
Aug. 9–12
,
American Institute of Chemical Engineers
,
New York
, pp.
46
51
.
You do not currently have access to this content.