Abstract

An algorithm and modeling are developed to make precise planning of year-round solar energy (SE) collection, storage, and redistribution to meet a decided demand of electrical power fully relying on solar energy. The model takes the past 10 years’ data of average and worst-case sky coverage (clouds fraction) condition of a location at a time interval (window) of per 6 min in every day to predict solar energy and electrical energy harvest. The electrical energy obtained from solar energy in sunny times must meet the instantaneous energy demand and also the need for energy storage for nighttime and overcast days, so that no single day will have a shortage of energy supply in the entire year and yearly cycles. The analysis can eventually determine a best starting date of operation, a least solar collection area, and a least energy storage capacity for cost-effectiveness of the system. The algorithm provides a fundamental tool for the design of a general renewable energy harvest and storage system for non-interrupted year-round power supply. As an example, the algorithm was applied for the authors’ local city, Tucson, Arizona of the U.S. for a steady power supply of 1 MW.

References

1.
Li
,
P.
,
2008
, “
Energy Storage is the Core of Renewable Energy Technologies
,”
IEEE Nanotechnol. Mag.
,
2
(
4
), pp.
13
18
. 10.1109/MNANO.2009.932032
2.
Afif
,
A.
,
Rahman
,
S. M.
,
Azad
,
A. T.
,
Zaini
,
J.
,
Islan
,
M. A.
, and
Azad
,
A. K.
,
2019
, “
Advanced Materials and Technologies for Hybrid Supercapacitors for Energy Storage—A Review
,”
J. Energy Storage
,
25
, p.
100852
. 10.1016/j.est.2019.100852
3.
Kojima
,
Y.
,
2019
, “
Hydrogen Storage Materials for Hydrogen and Energy Carriers
,”
Int. J. Hydrogen Energy
,
44
(
33
), pp.
18179
18192
. 10.1016/j.ijhydene.2019.05.119
4.
Li
,
P.
,
Van Lew
,
J.
,
Karaki
,
W.
,
Chan
,
C.
,
Stephens
,
J.
, and
Wang
,
Q.
,
2011
, “
Generalized Charts of Energy Storage Effectiveness for Thermocline Heat Storage Tank Design and Calibration
,”
Sol. Energy
,
83
(
9
), pp.
2130
2143
. 10.1016/j.solener.2011.05.022
5.
Dehghani-Sanij
,
A. R.
,
Tharumalingam
,
E.
,
Dusseault
,
M. B.
, and
Fraser
,
R.
,
2019
, “
Study of Energy Storage Systems and Environmental Challenges of Batteries
,”
Renew. Sustain. Energy Rev.
,
104
, pp.
192
208
. 10.1016/j.rser.2019.01.023
6.
Vanýsek
,
P.
, and
Novák
,
V.
,
2017
, “
Redox Flow Batteries as the Means for Energy Storage
,”
J. Energy Storage
,
13
, pp.
435
441
. 10.1016/j.est.2017.07.028
7.
Xu
,
B.
,
Li
,
P.
,
Chan
,
C.
, and
Tumilowicz
,
E.
,
2015
, “
General Volume Sizing Strategy for Thermal Storage System Using Phase Change Material for Concentrated Solar Thermal Power Plant
,”
Appl. Energy
,
140
, pp.
256
268
. 10.1016/j.apenergy.2014.11.046
8.
Bogdan Borowy
,
Z. S.
,
1996
, “
Methodology for Optimally Sizing the Combination of a Battery Bank and PV Array in a Wind-PV Hybrid System
,”
IEEE Trans. Energy Convers.
,
11
(
12
), pp.
367
375
. 10.1109/60.507648
9.
Al-falahi
,
M. D. A.
,
Jayasinghe
,
S. D. G.
, and
Enshaei
,
H.
,
2017
, “
A Review on Recent Size Optimization Methodologies for Standalone Solar and Wind Hybrid Renewable Energy System
,”
Energy Convers. Manage.
,
143
, pp.
252
274
. 10.1016/j.enconman.2017.04.019
10.
Li
,
J.
,
Wei
,
W.
, and
Xiang
,
J.
,
2012
, “
A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids
,”
Energies
,
5
(
12
), pp.
5307
5323
. 10.3390/en5125307
11.
Shen
,
W. X.
,
2009
, “
Optimally Sizing of Solar Array and Battery in a Standalone Photovoltaic System in Malaysia
,”
Renew. Energy
,
34
(
1
), pp.
348
352
. 10.1016/j.renene.2008.03.015
12.
Anoune
,
K.
,
Bouya
,
M.
,
Astito
,
A.
, and
Abdellah
,
A. B.
,
2018
, “
Sizing Methods and Optimization Techniques for PV-Wind Based Hybrid Renewable Energy System: A Review
,”
Renew. Sustain. Energy Rev.
,
93
, pp.
652
673
. 10.1016/j.rser.2018.05.032
13.
Delfanti
,
M.
,
Falabretti
,
D.
, and
Merlo
,
M.
,
2015
, “
Energy Storage for PV Power Plant Dispatching
,”
Renew. Energy
,
80
, pp.
61
72
. 10.1016/j.renene.2015.01.047
14.
Guadalfajara
,
M.
,
Lozano
,
M. A.
, and
Serra
,
L. M.
,
2015
, “
Simple Calculation Tool for Central Solar Heating Plants With Seasonal Storage
,”
Sol. Energy
,
120
, pp.
72
86
. 10.1016/j.solener.2015.06.011
15.
Dolinar
,
E.
,
Dong
,
X.
, and
Xi
,
B.
,
2016
, “
Evaluation and Intercomparison of Clouds, Precipitation and Radiation Budgets in Recent Re-Analyses Using Satellite-Surface Data
,”
Clim. Dyn.
,
46
(
7–8
), pp.
2123
2144
. 10.1007/s00382-015-2693-z
16.
Dong
,
X.
,
Xi
,
B.
,
Crosby
,
K.
,
Long
,
C. N.
,
Stone
,
R.
, and
Shupe
,
M.
,
2010
, “
A 10-yr Climatology of Arctic Cloud Fraction and Radiative Forcing at Barrow, Alaska
,”
J. Geophys. Res.
,
115
(
D12
), p.
D12124
. 10.1029/2009JD012800
17.
Diagne
,
M.
,
David
,
M.
,
Lauret
,
P.
,
Boland
,
J.
, and
Schmutz
,
N.
,
2013
, “
Review of Solar Irradiance Forecasting Methods and a Proposition for Small-Scale Insular Grids
,”
Renew. Sustain. Energy Rev.
,
27
, pp.
65
76
. 10.1016/j.rser.2013.06.042
18.
Mace
,
G. G.
, and
Dong
,
X.
,
2006
, “
Cloud Radiative Forcing at the ARM Climate Research Facility: Part 1. Technique, Validation, and Comparison to Satellite-Derived Diagnostic Quantities
,”
J. Geophys. Res.
,
111
, p.
D11S90
. 10.1029/2005jd005921
19.
Dong
,
X.
,
Xi
,
B.
, and
Minnis
,
P.
,
2006
, “
A Climatology of Midlatitude Continental Clouds From ARM SGP Site. Part II: Cloud Fraction and Surface Radiative Forcing
,”
J. Climate
,
19
(
9
), pp.
1765
1783
. 10.1175/JCLI3710.1
20.
Castañeda
,
M.
,
Cano
,
A.
,
Jurado
,
F.
,
Sánchez
,
H.
, and
Fernández
,
L. M.
,
2013
, “
Sizing Optimization, Dynamic Modeling and Energy Management Strategies of a Stand-Alone PV/Hydrogen/Battery-Based Hybrid System
,”
Int. J. Hydrogen Energy
,
38
(
10
), pp.
3830
3845
. 10.1016/j.ijhydene.2013.01.080
21.
Dawoud
,
S. M.
,
Lin
,
X.
, and
Okba
,
M. I.
,
2018
, “
Hybrid Renewable Microgrid Optimization Techniques: A Review
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
2039
2052
. 10.1016/j.rser.2017.08.007
22.
Nelson
,
D. B.
,
Nehrir
,
M. H.
, and
Wang
,
C.
,
2006
, “
Unit Sizing and Cost Analysis of Stand-Alone Hybrid Wind/PV/Fuel Cell Power Generation Systems
,”
Renew. Energy
,
31
(
10
), pp.
1641
1656
. 10.1016/j.renene.2005.08.031
23.
Barbir
,
F.
,
2005
, “
PEM Electrolysis for Production of Hydrogen From Renewable Energy Sources
,”
Sol. Energy
,
78
(
5
), pp.
661
669
. 10.1016/j.solener.2004.09.003
24.
a
,
B. P.
, and
Andrews
,
J.
,
2008
, “
Optimal Coupling of PV Arrays to PEM Electrolysers in Solar–Hydrogen Systems for Remote Area Power Supply
,”
Int. J. Hydrogen Energy
,
33
(
2
), pp.
490
498
. 10.1016/j.ijhydene.2007.10.040
25.
Shapiro
,
D.
,
Duffy
,
J.
,
Kimble
,
M.
, and
Pien
,
M.
,
2005
, “
Solar-Powered Regenerative PEM Electrolyzer/Fuel Cell System
,”
Sol. Energy
,
79
(
5
), pp.
544
550
. 10.1016/j.solener.2004.10.013
26.
Khalilnejad
,
A.
, and
Riahy
,
G. H.
,
2014
, “
A Hybrid Wind-PV System Performance Investigation for the Purpose of Maximum Hydrogen Production and Storage Using Advanced Alkaline Electrolyzer
,”
Energy Convers. Manage.
,
80
, pp.
398
406
. 10.1016/j.enconman.2014.01.040
27.
El-Sharkh
,
M. Y.
,
Tanrioven
,
M.
,
Rahman
,
A.
, and
Alam
,
M. S.
,
2006
, “
Cost Related Sensitivity Analysis for Optimal Operation of a Grid-Parallel PEM Fuel Cell Power Plant
,”
J. Power Sources
,
161
(
2
), pp.
1198
1207
. 10.1016/j.jpowsour.2006.06.046
28.
Pardo
,
P.
,
Deydier
,
A.
,
Anxionnaz-Minvielle
,
Z.
,
Rougé
,
S.
,
Cabassud
,
M.
, and
Cognet
,
P.
,
2014
, “
A Review on High Temperature Thermochemical Heat Energy Storage
,”
Renew. Sustain. Energy Rev.
,
32
, pp.
591
610
. 10.1016/j.rser.2013.12.014
29.
Li
,
P.-W.
, and
Chan
,
C. L.
,
2017
,
Thermal Energy Storage Analyses and Designs
,
Elsevier
,
New York
.
30.
Sinha
,
S.
, and
Chandel
,
S. S.
,
2015
, “
Review of Recent Trends in Optimization Techniques for Solar Photovoltaic–Wind Based Hybrid Energy Systems
,”
Renew. Sustain. Energy Rev.
,
50
, pp.
755
769
. 10.1016/j.rser.2015.05.040
31.
Ramli
,
M. A. M.
,
Bouchekara
,
H. R. E. H.
, and
Alghamdi
,
A. S.
,
2018
, “
Optimal Sizing of PV/Wind/Diesel Hybrid Microgrid System Using Multi-Objective Self-Adaptive Differential Evolution Algorithm
,”
Renew. Energy
,
121
, pp.
400
411
. 10.1016/j.renene.2018.01.058
32.
Yang
,
H.
,
Zhou
,
W.
,
Lu
,
L.
, and
Fang
,
Z.
,
2008
, “
Optimal Sizing Method for Stand-Alone Hybrid Solar–Wind System With LPSP Technology by Using Genetic Algorithm
,”
Sol. Energy
,
82
(
4
), pp.
354
367
. 10.1016/j.solener.2007.08.005
33.
Lee
,
J.-Y.
,
Chen
,
C.-L.
, and
Chen
,
H.-C.
,
2014
, “
A Mathematical Technique for Hybrid Power System Design With Energy Loss Considerations
,”
Energy Convers. Manage.
,
82
, pp.
301
307
. 10.1016/j.enconman.2014.03.029
34.
Nadjemi
,
O.
,
Nacer
,
T.
,
Hamidat
,
A.
, and
Salhi
,
H.
,
2017
, “
Optimal Hybrid PV/Wind Energy System Sizing: Application of Cuckoo Search Algorithm for Algerian Dairy Farms
,”
Renew. Sustain. Energy Rev.
,
70
, pp.
1352
1365
. 10.1016/j.rser.2016.12.038
35.
Khan
,
F. A.
,
Pal
,
N.
, and
Saeed
,
S. H.
,
2018
, “
Review of Solar Photovoltaic and Wind Hybrid Energy Systems for Sizing Strategies Optimization Techniques and Cost Analysis Methodologies
,”
Renew. Sustain. Energy Rev.
,
92
, pp.
937
947
. 10.1016/j.rser.2018.04.107
36.
Gwesha
,
A. O.
,
Alfulayyih
,
Y. M.
, and
Li
,
P.
, “
Optimization of Fixed PV Panel “Tilt” Angles for Maximal Energy Harvest Considering Year-Around sky Coverage Conditions
,”
Proceedings of the 2019 International Mechanical Engineering Congress and Exposition, IMECE2019-10391
,
Salt Lake City, UT
,
Nov. 11–14, 2019
.
37.
Yogi Goswami
,
D.
,
2015
,
Principles of Solar Engineering
, 3rd ed.,
CRC Press
,
Boca Raton
.
38.
Mazloomi
,
S. K.
, and
Sulaiman
,
N.
,
2012
, “
Influencing Factors of Water Electrolysis Electrical Efficiency
,”
Renew. Sustain. Energy Rev.
,
16
(
6
), pp.
4257
4263
. 10.1016/j.rser.2012.03.052
39.
Mench
,
M. M.
,
2008
,
Fuel Cell Engines
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
40.
Sultan
,
S. M.
, and
Ervina Efzan
,
M. N.
,
2018
, “
Review on Recent Photovoltaic/Thermal (PV/T) Technology Advances and Applications
,”
Sol. Energy
,
173
, pp.
939
954
. 10.1016/j.solener.2018.08.032
41.
Markvart
,
T.
,
1996
, “
Sizing of Hybrid Photovoltaic-Wind Energy Systems
,”
Sol. Energy
,
57
(
4
), pp.
277
281
. 10.1016/S0038-092X(96)00106-5
You do not currently have access to this content.