Abstract

The doubly fed induction generator (DFIG)-based wind turbine as a nonlinear, compound, and multivariable time-varying system encompasses several uncertainties especially unfamiliar disturbances and unmodeled dynamics. The design of a high-performance and reliable controller for this system is regarded as a complex task. In this paper, an effective and roust fractional-order sliding mode controller (FOSMC) has been designed to accurately regulate the active and reactive power of DFIG. FOSMC has overcome the system uncertainties and abated the chattering amplitude. Since tuning the FOSMC is a challenging assignment, the application of a multi-objective optimization algorithm can efficiently and precisely solve the design problem. In this regard, non-dominated sorting multi-objective gray wolf optimizer (MOGWO) is taken into account to optimally adjust the FOSMC. In a word, the simulation results have definitively validated robustness of MOGWO-based FOSMC in order to accurately track DFIG's active and reactive power.

References

1.
Tseng
,
K.
, and
Huang
,
C.-C.
,
2014
, “
High Step-Up High-Efficiency Interleaved Converter With Voltage Multiplier Module for Renewable Energy System
,”
IEEE Trans. Ind. Electron.
,
61
(
3
), pp.
1311
1319
. 10.1109/tie.2013.2261036
2.
Chou
,
S. F.
,
Lee
,
C. T.
,
Ko
,
H. C.
, and
Cheng
,
P. T.
,
2014
, “
A Low-Voltage Ride-Through Method With Transformer Flux Compensation Capability of Renewable Power Grid-Side Converters
,”
IEEE Trans. Power Electron.
,
29
(
4
), pp.
1710
1719
. 10.1109/tpel.2013.2266511
3.
Guo
,
X.
,
Zhang
,
X.
,
Wang
,
B.
, and
Guerrero
,
J. M.
,
2014
, “
Asymmetrical Grid Fault Ride-Through Strategy of Three-Phase Grid-Connected Inverter Considering Network Impedance Impact in Low-Voltage Grid
,”
IEEE Trans. Power Electron.
,
29
(
3
), pp.
1064
1068
. 10.1109/tpel.2013.2278030
4.
He
,
J.
,
Li
,
Y. W.
,
Blaabjerg
,
F.
, and
Wang
,
X.
,
2014
, “
Active Harmonic Filtering Using Current-Controlled, Grid-Connected DG Units With Closed-Loop Power Control
,”
IEEE Trans. Power Electron.
,
29
(
2
), pp.
642
653
. 10.1109/tpel.2013.2255895
5.
Falehi
,
A. D.
, and
Rafiee
,
M.
,
2018
, “
Maximum Efficiency of Wind Energy Using Novel Dynamic Voltage Restorer for DFIG Based Wind Turbine
,”
Energy Rep.
,
4
(
1
), pp.
308
322
. 10.1016/j.egyr.2018.01.006
6.
Ma
,
K.
, and
Blaabjerg
,
F.
,
2014
, “
Modulation Methods for Neutral-Point-Clamped Wind Power Converter Achieving Loss and Thermal Redistribution Under Low-Voltage Ride-Through
,”
IEEE Trans. Ind. Electron.
,
61
(
2
), pp.
835
845
. 10.1109/tie.2013.2254099
7.
Messina
,
A. R.
,
Castellanos
,
R.
,
Castro
,
C. M.
,
Barocio
,
E.
, and
Zavala
,
A. J.
,
2017
, Large-Scale Wind Generation Development in the Mexican Power Grid: Impact Studies”,
Handbook of Distributed Generation
,
A.
Di Nola
,
V.
Loia
, and
P.
Hájek
, eds.,
Springer
,
Cham
, pp.
6633
6655
.
8.
Meng
,
W.
,
Yang
,
Q.
,
Ying
,
Y.
,
Sun
,
Y.
,
Yang
,
Z.
, and
Sun
,
Y.
,
2013
, “
Adaptive Power Capture Control of Variable-Speed Wind Energy Conversion Systems With Guaranteed Transient and Steady-State Performance
,”
IEEE Trans. Energy Convers.
,
28
(
3
), pp.
716
725
. 10.1109/tec.2013.2273357
9.
Yaramasu
,
V.
,
Wu
,
B.
,
Sen
,
P. C.
,
Kouro
,
S.
, and
Narimani
,
M.
,
2015
, “
High-Power Wind Energy Conversion Systems: State-of-the-Art and Emerging Technologies
,”
Proc. IEEE
,
103
(
5
), pp.
740
788
. 10.1109/jproc.2014.2378692
10.
Nuno
,
M. A. F.
, and
Marques
,
A. J. C.
,
2014
, “
A Fault-Tolerant Direct Controlled PMSG Drive for Wind Energy Conversion Systems
,”
IEEE Trans. Ind. Electron.
,
61
(
2
), pp.
821
834
. 10.1109/tie.2013.2251734
11.
Nian
,
H.
, and
Song
,
Y.
,
2014
, “
Direct Power Control of Doubly Fed Induction Generator Under Distorted Grid Voltage
,”
IEEE Trans. Power Electron.
,
29
(
2
), pp.
894
905
. 10.1109/tpel.2013.2258943
12.
Melo
,
D. F. R.
, and
Chang-Chien
,
L.-R.
,
2014
, “
Synergistic Control Between Hydrogen Storage System and Off-Shore Wind Farm for Grid Operation
,”
IEEE Trans. Sustain. Energy
,
5
(
1
), pp.
18
27
. 10.1109/tste.2013.2272332
13.
Falehi
,
A. D.
, and
Rafiee
,
M.
,
2017
, “
Enhancement of DFIG-Wind Turbine’s LVRT Capability Using Novel DVR Based Odd-Nary Cascaded Asymmetric Multi-Level Inverter
,”
Eng. Sci. Technol. Int. J.
,
20
(
3
), pp.
805
824
. 10.1016/j.jestch.2017.05.004
14.
Falehi
,
A. D.
, and
Rafiee
,
M.
,
2018
, “
LVRT/HVRT Capability Enhancement of DFIG Wind Turbine Using Optimal Design and Control of Novel PIλDμ-AMLI Based DVR
,”
Sustain. Energy Grids Networks
,
16
(
4
), pp.
111
125
. 10.1016/j.segan.2018.06.001
15.
Falehi
,
A. D.
, and
Rafiee
,
M.
,
2018
, “
Fault Ride-Through Capability Enhancement of DFIG-Based Wind Turbine Using Novel Dynamic Voltage Restorer Based on Two Switches Boost Converter Coupled With Quinary Multi-Level Inverter
,”
Energy Syst.
,
9
(
4
), pp.
1071
1094
. 10.1007/s12667-017-0249-5
16.
Arifujjaman
,
M.
,
Iqbal
,
M.
, and
Quaicoe
,
J. E.
,
2010
, “
Vector Control of a DFIG Based Wind Turbine
,”
IU-J. Electr. Electron. Eng.
,
9
(
2
), pp.
1057
1066
.
17.
Falehi
,
A. D.
, and
Rafiee
,
M.
,
2019
, “
Optimal Control of Novel Fuel Cell-Based DVR Using ANFISC-MOSSA to Increase FRT Capability of DFIG-Wind Turbine
,”
Soft Comput.
,
23
(
15
), pp.
6633
6655
. 10.1007/s00500-018-3312-9
18.
Falehi
,
A. D.
,
2018
, “
MOPSO Based TCSC-ANFIS-POD Technique: Design, Simultaneous Scheme, Power System Oscillations Suppression
,”
J. Intell. Fuzzy Syst.
,
34
(
1
), pp.
23
34
. 10.3233/jifs-16241
19.
Civelek
,
Z.
,
Lüy
,
M.
,
Çam
,
E.
, and
Barışçı
,
N.
,
2016
, “
Control of Pitch Angle of Wind Turbine by Fuzzy Pid Controller
,”
Intell. Autom. Soft Comput.
,
22
(
3
), pp.
463
471
. 10.1080/10798587.2015.1095417
20.
Hakimzadeh
,
M.
, and
Hayatdavudi
,
M.
,
2012
, “
Control of Pitch Angle of Wind Turbine Using a Novel Self-Tuning Controller
,”
Proceedings of the International Conference on Control System and Power Electronics, CSPE
,
Chennai, India
,
Dec. 3–4
, pp.
551
557
.
21.
Sedaghati
,
R.
, and
Hayatdavudi
,
M.
,
2012
, “
Presentation a New Method Based on Using Emotional Intelligent Controllers for Wind Turbine Active and Reactive Power Equipped With DFIG
,”
Int. J. Multidiscip. Sci. Eng.
,
3
(
8
), pp.
25
31
.
22.
Sedaghati
,
R.
,
2012
, “
A Novel Control Strategy Study for DFIG-Based Wind Turbine
,”
Indian J. Sci. Technol.
,
5
(
12
), pp.
3741
3745
.
23.
Fazelpour
,
F.
,
Tarashkar
,
N.
, and
Rosen
,
A.
,
2016
, “
Short-Term Wind Speed Forecasting Using Artificial Neural Networks for Tehran, Iran
,”
Int. J. Energy Environ. Eng.
,
7
(
4
), pp.
377
390
. 10.1007/s40095-016-0220-6
24.
Liao
,
K.
,
He
,
Z.
,
Xu
,
Y.
,
Chen
,
G.
,
Dong
,
Z. Y.
, and
Wong
,
K. W.
,
2017
, “
A Sliding Mode Based Damping Control of DFIG for Inter-Area Power Oscillations
,”
IEEE Trans. Sustain. Energy
,
8
(
1
), pp.
258
267
. 10.1109/tste.2016.2597306
25.
Patnik
,
R. K.
,
Dash
,
P. K.
, and
Mahapatra
,
K.
,
2016
, “
Adaptive Terminal Sliding Mode Power Control of DFIG Based Wind Energy Conversion System for Stability Enhancement
,”
Int. Trans. Electr. Energy Syst.
,
26
(
4
), pp.
750
782
. 10.1002/etep.2105
26.
Evangelista
,
C.
,
Puleston
,
P.
,
Valenciaga
,
F.
, and
Fridman
,
L. M.
,
2013
, “
Lyapunov-Designed Super-Twisting Sliding Mode Control for Wind Energy Conversion Optimization
,”
IEEE Trans. Ind. Electron.
,
60
(
2
), pp.
538
545
. 10.1109/tie.2012.2188256
27.
Taher Azar
,
A.
, and
Zhu
,
Q.
,
2015
, “Optimal Sliding and Decoupled Sliding Mode Tracking Control by Multi-Objective Particle Swarm Optimization and Genetic Algorithms,”
Advances and Applications in Sliding Mode Control Systems
,
Springer
,
Cham
, pp.
43
78
.
28.
Taher Azar
,
A.
, and
Serrano
,
F. E.
,
2015
, “Adaptive Sliding Mode Control of the Furuta Pendulum,”
Advances and Applications in Sliding Mode Control Systems
,
Springer
,
Cham
pp.
1
42
.
29.
Falehi
,
A. D.
,
2019
, “
Optimal Fractional Order BELBIC to Ameliorate Small Signal Stability of Interconnected Hybrid Power System
,”
Environ. Prog. Sustain. Energy
,
38
(
5
), pp.
1
18
. 10.1002/ep.13208
30.
Mirjalili
,
S.
,
Mirjalili
,
S. M.
, and
Lewis
,
A.
,
2014
, “
Grey Wolf Optimizer
,”
Adv. Eng. Software
,
69
(
3
), pp.
46
61
. 10.1016/j.advengsoft.2013.12.007
31.
Boukhezzar
,
B.
, and
Siguerdidjane
,
H.
,
2009
, “
Nonlinear Control With Wind Estimation of a DFIG Variable Speed Wind Turbine for Power Capture Optimization
,”
Energy Convers. Manage.
,
50
(
4
), pp.
885
892
. 10.1016/j.enconman.2009.01.011
32.
Ghennam
,
T.
, and
Berkouk
,
E. M.
,
2010
, “
Back-to-Back Three-Level Converter Controlled by a Novel Space-Vector Hysteresis Current Control for Wind Conversion Systems
,”
Electr. Power Syst. Res.
,
80
(
4
), pp.
444
455
. 10.1016/j.epsr.2009.10.009
33.
Bouchiba
,
N.
,
Barkia
,
A.
,
Sallem
,
S.
,
Chrifi-Alaoui
,
L.
,
Drid
,
S.
, and
Kammoun
,
M. B.
,
2017
, “
Implementation and Comparative Study of Control Strategies for an Isolated DFIG Based WECS
,”
Eur. Phys. J. Plus
,
132
(
10
), pp.
1
13
. 10.1140/epjp/i2017-11712-5
34.
Salah
,
L.
,
Franck
,
P.
, and
Alain
,
G.
,
2007
, “
Higher Order Sliding Mode Control Based on Integral Sliding Mode
,”
Automatica
,
43
(
3
), pp.
531
537
. 10.1016/j.automatica.2006.09.017
35.
Arie
,
L.
,
2007
, “
Principles of 2-Sliding Mode Design
,”
Automatica
,
43
(
4
), pp.
576
586
.
36.
Jianxing
,
L.
,
Salah
,
L.
, and
Maxime
,
W.
,
2014
, “
Observer-Based Higher Order Sliding Mode Control of Unity Power Factor in Three-Phase AC/DC Converter for Hybrid Electric Vehicle Applications
,”
Int. J. Control
,
78
(
6
), pp.
1117
1130
. 10.1080/00207179.2013.868609
37.
Seixas
,
M.
,
Melício
,
R.
, and
Mendes
,
V. M. F.
,
2014
, “
Offshore Wind Turbine Simulation: Multi-Body Drive Train. Back-to-Back NPC Converters. Fractional-Order Control
,”
Energy
,
69
(
6
), pp.
357
369
. 10.1016/j.energy.2014.03.025
38.
Petras
,
I.
,
2011
,
Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation
,
Springer
,
Berlin
.
39.
Zhe
,
G.
, and
Xiaozhong
,
L.
,
2012
, “
Improved Oustaloup Approximation of Fractional Order Operator Using Adaptive Chaotic Particle Swarm Optimization
,”
J. Syst. Sci. Syst. Eng.
,
23
(
1
), pp.
145
153
. 10.1109/jsee.2012.00018
40.
Matignon
,
D.
,
1996
, “
Stability Results for Fractional Differential Equations With Applications to Control Processing
,”
Comput. Eng. Syst. Appl.
,
2
, pp.
963
968
.
41.
Tang
,
Y.
,
Zhang
,
X.
,
Zhang
,
D.
,
Zhao
,
G.
, and
Guan
,
X.
,
2013
, “
Fractional Order Sliding Mode Controller Design for Antilock Braking Systems
,”
Neurocomputing
,
111
(
13
), pp.
122
130
. 10.1016/j.neucom.2012.12.019
42.
Emary
,
E.
,
Zawbaa
,
H. M.
, and
Hassanien
,
A. E.
,
2016
, “
Binary Grey Wolf Optimization Approaches for Feature Selection
,”
Neurocomputing
,
172
(
1
), pp.
371
381
. 10.1016/j.neucom.2015.06.083
43.
Falehi
,
A. D.
, and
Mosallanejad
,
A.
,
2016
, “
Neoteric HANFISC-SSSC Based on MOPSO Technique Aimed at Oscillation Suppression of Interconnected Multi-Source Power Systems
,”
IET Gener. Transm. Distrib.
,
10
(
7
), pp.
1728
1740
. 10.1049/iet-gtd.2015.0404
44.
Sahoo
,
A.
, and
Chandra
,
S.
,
2017
, “
Multi-Objective Grey Wolf Optimizer for Improved Cervix Lesion Classification
,”
Appl. Soft Comput.
,
52
(
2
), pp.
64
80
. 10.1016/j.asoc.2016.12.022
45.
Falehi
,
A. D.
,
2019
, “
An Innovative OANF–IPFC Based on MOGWO to Enhance Participation of DFIG-Based Wind Turbine in Interconnected Reconstructed Power System: An Innovative OANF–IPFC Based on MOGWO to Enhance Participation of DFIG-Based Wind Turbine
,”
Soft Comput.
,
23
(
23
), pp.
12911
12927
. 10.1007/s00500-019-03848-0
46.
Darfoun
,
M. A.
, and
El-Hawary
,
M. E.
,
2015
, “
Multi-Objective Optimization Approach for Optimal Distributed Generation Sizing and Placement
,”
Electr. Power Compon. Syst.
,
43
(
7
), pp.
828
836
. 10.1080/15325008.2014.1002589
47.
Falehi
,
A. D.
,
2018
, “
Optimal Design and Analysis of NIOFPID-Based Direct Power Control to Strengthen DFIG Power Control
”,
ASME J. Dyn. Syst. Meas. Control
,
140
(
9
), p.
091001
. 10.1115/1.4039485
48.
Falehi
,
A. D.
,
2018
, “
Augment Dynamic and Transient Capability of DFIG Using Optimal Design of NIOPID Based DPC Strategy
,”
Environ. Prog. Sustain. Energy
,
37
(
4
), pp.
1491
1502
. 10.1002/ep.12811
You do not currently have access to this content.