Abstract

Renewable energy is an attractive alternative source of energy to fossil fuels, as it can help prevent global warming and air pollution. Solar energy, one of the most promising renewable energy sources, can be converted into electricity using photovoltaic power generation systems. Anywhere on the Earth, solar irradiance generally fluctuates during the day but depends on atmospheric conditions. Thus, when a photovoltaic power generation system is connected to a conventional electricity network, predicting near-future global solar irradiance, especially its drastic increases and decreases, is critical to stabilize the network. In this research, a simple method utilizing artificial neural networks to predict large increases and decreases in global solar irradiance is developed. The red–blue ratio (RBR) values, which are extracted from a set of sampling points in images of the sky, as well as the corresponding global solar irradiance values, are used as the artificial neural network inputs. The direction of the movement of clouds is predicted using RBR data at the sampling points. Then, solar irradiance is predicted using the RBR values along the axis closest to the predicted cloud movement direction and the corresponding solar irradiance measurements. The proposed methodology is able to predict both large increases and decreases in solar irradiance greater than 50 through 100 W/m2 1 min in advance with a 40% prediction error. A significant reduction in computational effort is achieved compared to existing sky image-based methodologies using limited sky image data.

References

1.
Chukwujindu
,
N. S.
,
2017
, “
A Comprehensive Review of Empirical Models for Estimating Global Solar Radiation in Africa
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
955
995
. 10.1016/j.rser.2017.04.101
2.
Mohanty
,
S.
,
Patra
,
P. K.
,
Sahoo
,
S. S.
, and
Mohanty
,
A.
,
2017
, “
Forecasting of Solar Energy With Application for a Growing Economy Like India: Survey and Implication
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
539
553
. 10.1016/j.rser.2017.04.107
3.
Youssef
,
A.
,
El-Telbany
,
M.
, and
Zekry
,
A.
,
2017
, “
The Role of Artificial Intelligence in Photo-Voltaic Systems Design and Control: A Review
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
72
79
. 10.1016/j.rser.2017.04.046
4.
Inman
,
R. H.
,
Pedro
,
H. T. C.
, and
Coimbra
,
C. F. M.
,
2013
, “
Solar Forecasting Methods for Renewable Energy Integration
,”
Prog. Energy Combust. Sci.
,
39
(
6
), pp.
535
576
. 10.1016/j.pecs.2013.06.002
5.
Reikard
,
G.
,
2009
, “
Predicting Solar Radiation at High Resolutions: A Comparison of Time Series Forecasts
,”
Sol. Energy
,
83
(
3
), pp.
342
349
. 10.1016/j.solener.2008.08.007
6.
Bacher
,
P.
,
Madsen
,
H.
, and
Nielsen
,
H. A.
,
2009
, “
Online Short-Term Solar Power Forecasting
,”
Sol. Energy
,
83
(
10
), pp.
1772
1783
. 10.1016/j.solener.2009.05.016
7.
Lorenz
,
E.
,
Heinemann
,
D.
, and
Kurz
,
C.
,
2012
, “
Local and Regional Photovoltaic Power Prediction for Large Scale Grid Integration: Assessment of a New Algorithm for Snow Detection
,”
Prog. Photovoltaics Res. Appl.
,
20
(
6
), pp.
760
769
. 10.1002/pip.1224
8.
Perez
,
R.
,
Lorenz
,
E.
,
Pelland
,
S.
,
Beauharnois
,
M.
,
Knowe Van
,
G.
,
Hemker Jr
,
K.
,
Heinemann
,
D.
,
Remund
,
J.
,
Müller
,
S. C.
,
Traunmüller
,
W.
,
Steinmauer
,
G.
,
Pozo
,
D.
,
Ruiz-Arias
,
J. A.
,
Lara-Fanego
,
V.
,
Ramirez-Santigosa
,
L.
,
Gaston-Romero
,
M.
, and
Pomares
,
L. M.
,
2013
, “
Comparison of Numerical Weather Prediction Solar Irradiance Forecasts in the US, Canada and Europe
,”
Sol. Energy
,
94
, pp.
305
326
. 10.1016/j.solener.2013.05.005
9.
Kamadinata
,
J. O.
,
Ken
,
T. L.
, and
Suwa
,
T.
,
2019
, “
Sky Image-Based Solar Irradiance Prediction Methodologies Using Artificial Neural Networks
,”
Renewable Energy
,
134
, pp.
837
845
. 10.1016/j.renene.2018.11.056
10.
Mellit
,
A.
,
Eleuch
,
H.
,
Benghanem
,
M.
,
Elaoun
,
C.
, and
Pavan
,
A. M.
,
2010
, “
An Adaptive Model for Predicting of Global, Direct and Diffuse Hourly Solar Irradiance
,”
Energy Convers. Manag.
,
51
(
4
), pp.
771
782
. 10.1016/j.enconman.2009.10.034
11.
Mellit
,
A.
, and
Pavan
,
A. M.
,
2010
, “
A 24-h Forecast of Solar Irradiance Using Artificial Neural Network: Application for Performance Prediction of a Grid-Connected PV Plant at Trieste, Italy
,”
Sol. Energy
,
84
(
5
), pp.
807
821
. 10.1016/j.solener.2010.02.006
12.
Gutierrez-Corea
,
F.
,
Manso-Callejo
,
M.-A.
,
Moreno-Regidor
,
M.-P.
, and
Manrique-Sancho
,
M.-T.
,
2016
, “
Forecasting Short-Term Solar Irradiance Based on Artificial Neural Networks and Data From Neighboring Meteorological Stations
,”
Sol. Energy
,
134
, pp.
119
131
. 10.1016/j.solener.2016.04.020
13.
Cao
,
J.
, and
Lin
,
X.
,
2008
, “
Study of Hourly and Daily Solar Irradiation Forecast Using Diagonal Recurrent Wavelet Neural Networks
,”
Energy Convers. Manag.
,
49
(
6
), pp.
1396
1406
. 10.1016/j.enconman.2007.12.030
14.
Alonso-montesinos
,
J.
,
Batlles
,
F. J.
, and
Portillo
,
C.
,
2015
, “
Solar Irradiance Forecasting at One-Minute Intervals for Different Sky Conditions Using Sky Camera Images
,”
Energy Convers. Manag.
,
105
, pp.
1166
1177
. 10.1016/j.enconman.2015.09.001
15.
Marquez
,
R.
, and
Coimbra
,
C. F. M.
,
2013
, “
Intra-Hour DNI Forecasting Based on Cloud Tracking Image Analysis
,”
Sol. Energy
,
91
, pp.
327
336
. 10.1016/j.solener.2012.09.018
16.
Bernecker
,
D.
,
Riess
,
C.
,
Angelopoulou
,
E.
, and
Hornegger
,
J.
,
2014
, “
Continuous Short-Term Irradiance Forecasts Using Sky Images
,”
Sol. Energy
,
110
, pp.
303
315
. 10.1016/j.solener.2014.09.005
17.
Barbieri
,
F.
,
Rajakaruna
,
S.
, and
Ghosh
,
A.
,
2017
, “
Very Short-Term Photovoltaic Power Forecasting With Cloud Modeling : A Review
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
242
263
. 10.1016/j.rser.2016.10.068
18.
Yang
,
D.
,
Ye
,
Z.
,
Lim
,
L. H. I.
, and
Dong
,
Z.
,
2015
, “
Very Short Term Irradiance Forecasting Using the Lasso
,”
Sol. Energy
,
114
, pp.
314
326
. 10.1016/j.solener.2015.01.016
19.
Zhang
,
J.
,
Florita
,
A.
,
Hodge
,
B.
,
Lu
,
S.
,
Hamann
,
H. F.
,
Banunarayanan
,
V.
, and
Brockway
,
A. M.
,
2015
, “
A Suite of Metrics for Assessing the Performance of Solar Power Forecasting
,”
Sol. Energy
,
111
, pp.
157
175
. 10.1016/j.solener.2014.10.016
20.
Pedro
,
H. T. C.
, and
Coimbra
,
C. F. M.
,
2015
, “
Nearest-Neighbor Methodology for Prediction of Intra-Hour Global Horizontal and Direct Normal Irradiances
,”
Renewable Energy
,
80
, pp.
770
782
. 10.1016/j.renene.2015.02.061
21.
Cui
,
M.
,
Zhang
,
J.
,
Feng
,
C.
,
Florita
,
A. R.
,
Sun
,
Y.
, and
Hodge
,
B.-M.
,
2017
, “
Characterizing and Analyzing Ramping Events in Wind Power, Solar Power, Load, and Netload
,”
Renewable Energy
,
111
, pp.
227
244
. 10.1016/j.renene.2017.04.005
22.
Mazumdar
,
B. M.
,
Saquib
,
M.
, and
Das
,
A. K.
,
2014
, “
An Empirical Model for Ramp Analysis of Utility-Scale Solar PV Power
,”
Sol. Energy
,
107
, pp.
44
49
. 10.1016/j.solener.2014.05.027
23.
Orwig
,
K. D.
,
Ahlstrom
,
M. L.
,
Banunarayanan
,
V.
,
Sharp
,
J.
,
Wilczak
,
J. M.
,
Freedman
,
J.
,
Haupt
,
S. E.
,
Cline
,
J.
,
Bartholomy
,
O.
,
Hamann
,
H. F.
,
Hodge
,
B. M.
,
Finley
,
C.
,
Nakafuji
,
D.
,
Peterson
,
J. L.
,
Maggio
,
D.
, and
Marquis
,
M.
,
2015
, “
Recent Trends in Variable Generation Forecasting and Its Value to the Power System
,”
IEEE Trans. Sustain. Energy
,
6
(
3
), pp.
924
933
. 10.1109/TSTE.2014.2366118
24.
Florita
,
A.
,
Hodge
,
B.-M.
, and
Orwig
,
K.
,
2013
, “
Identifying Wind and Solar Ramping Events
,”
IEEE Green Technologies Conference (GreenTech)
,
Denver, CO
,
Apr. 4–5
, pp.
147
152
.
25.
Cheng
,
H.-Y.
,
2017
, “
Cloud Tracking Using Clusters of Feature Points for Accurate Solar Irradiance Nowcasting
,”
Renewable Energy
,
104
, pp.
281
289
. 10.1016/j.renene.2016.12.023
26.
Cheng
,
H.-Y.
,
Yu
,
C.-C.
, and
Lin
,
S.-J.
,
2014
, “
Bi-Model Short-Term Solar Irradiance Prediction Using Support Vector Regressors
,”
Energy
,
70
, pp.
121
127
. 10.1016/j.energy.2014.03.096
27.
Chu
,
Y.
,
Pedro
,
H. T. C.
,
Li
,
M.
, and
Coimbra
,
C. F. M.
,
2015
, “
Real-Time Forecasting of Solar Irradiance Ramps With Smart Image Processing
,”
Sol. Energy
,
114
, pp.
91
104
. 10.1016/j.solener.2015.01.024
28.
Vallance
,
L.
,
Charbonnier
,
B.
,
Paul
,
N.
,
Dubost
,
S.
, and
Blanc
,
P.
,
2017
, “
Towards a Standardized Procedure to Assess Solar Forecast Accuracy: A New Ramp and Time Alignment Metric
,”
Sol. Energy
,
150
, pp.
408
422
. 10.1016/j.solener.2017.04.064
29.
GoPro
,
2014
, “
Hero 4 Silver: User Manual
,” https://gcoe.sfsu.edu/sites/default/files/PDFs/ cahilldoc/GoPro_HERO4_Silver_user_manual.pdf, Accessed November 4, 2019.
30.
Kipp & Zonen B. V.
,
2016
, “
CMP Series Pyranometer, Instruction Manual
,” https://www.kippzonen.com/Download/72/Manual-Pyranometers-CMPseries- English?ShowInfo=true, Accessed November 4, 2019.
31.
Marquez
,
R.
, and
Coimbra
,
C. F. M.
,
2013
, “
Proposed Metric for Evaluation of Solar Forecasting Models
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011016
. 10.1115/1.4007496
32.
Davis
,
G. B.
,
Grjggs
,
D. J.
, and
Sullivan
,
G. D.
,
1992
, “
Automatic Estimation of Cloud Amount Using Computer Vision
,”
J. Atmos. Ocean. Technol.
,
9
(
1
), pp.
81
85
. 10.1175/1520-0426(1992)009<0081:AEOCAU>2.0.CO;2
33.
Souza-Echer
,
M. P.
,
Pereira
,
E. B.
,
Bins
,
L. S.
, and
Andrade
,
M. A. R.
,
2006
, “
A Simple Method for the Assessment of the Cloud Cover State in High-Latitude Regions by a Ground-Based Digital Camera
,”
J. Atmos. Ocean. Technol.
,
23
(
3
), pp.
437
447
. 10.1175/JTECH1833.1
34.
Alonso
,
J.
,
Batlles
,
F. J.
,
López
,
G.
, and
Ternero
,
A.
,
2014
, “
Sky Camera Imagery Processing Based on a Sky Classification Using Radiometric Data
,”
Energy
,
68
, pp.
599
608
. 10.1016/j.energy.2014.02.035
35.
Sabburg
,
J.
,
Wong
,
J.
,
Atmospheric
,
J. O. F.
,
Technology
,
O.
,
Sabburg
,
J.
, and
Wong
,
J.
,
1999
, “
Evaluation of a Ground-Based Sky Camera System for Use in Surface Irradiance Measurement
,”
J. Atmos. Ocean. Technol.
,
16
(
6
), pp.
752
759
. 10.1175/1520-0426(1999)016
36.
Chow
,
C. W.
,
Urquhart
,
B.
,
Lave
,
M.
,
Dominguez
,
A.
,
Kleissl
,
J.
,
Shields
,
J.
,
Washom
,
B.
,
Wai
,
C.
,
Urquhart
,
B.
,
Lave
,
M.
,
Dominguez
,
A.
,
Kleissl
,
J.
,
Shields
,
J.
, and
Washom
,
B.
,
2011
, “
Intra-Hour Forecasting with a Total Sky Imager at the UC San Diego Solar Energy Testbed
,”
Sol. Energy
,
85
(
11
), pp.
2881
2893
. 10.1016/j.solener.2011.08.025
37.
Ghonima
,
M. S.
,
Urquhart
,
B.
,
Chow
,
C. W.
,
Shields
,
J. E.
,
Cazorla
,
A.
, and
Kleissl
,
J.
,
2012
, “
A Method for Cloud Detection and Opacity Classification Based on Ground Based Sky Imagery
,”
Atmos. Meas. Tech.
,
5
(
11
), pp.
2881
2892
. 10.5194/amt-5-2881-2012
38.
Long
,
C. N.
,
Sabburg
,
J. M.
,
Calbó
,
J.
, and
Pagès
,
D.
,
2006
, “
Retrieving Cloud Characteristics From Ground-Based Daytime Color All-Sky Images
,”
J. Atmos. Ocean. Technol.
,
23
(
5
), pp.
633
652
. 10.1175/JTECH1875.1
39.
Li
,
Q.
,
Lu
,
W.
, and
Yang
,
J.
,
2011
, “
A Hybrid Thresholding Algorithm for Cloud Detection on Ground-Based Color Images
,”
J. Atmos. Ocean. Technol.
,
28
(
10
), pp.
1286
1296
. 10.1175/JTECH-D-11-00009.1
40.
Crisosto
,
C.
,
Hofmann
,
M.
,
Mubarak
,
R.
, and
Seckmeyer
,
G.
,
2018
, “
One-Hour Prediction of the Global Solar Irradiance From All-Sky Images Using Artificial Neural Networks
,”
Energies
,
11
(
11
), p.
2906
. 10.3390/en11112906
41.
Ward System Group Inc
, and
Ward System Groups
,
1996
, “
Neuroshell 2 Help
,” http://www.wardsystems.com/manuals/neuroshell2/, Accessed November 4, 2019.
You do not currently have access to this content.