Wireless sensor network (WSN) is widely used in a variety of applications including habitat monitoring, military surveillance, environmental monitoring, scientific applications, etc. The major limitation of WSN is that sometimes it is not feasible to replace or recharge the battery once it gets fully exhausted and thus, it limits the lifetime of WSN. One of the possible solutions to overcome this limitation is to incorporate any energy harvesting device, which can use the alternative energy sources to charge the battery. However, the processing temperature and the performance of energy harvesting devices limit their applications. In this paper, low temperature and high performance single-sided silicon heterojunction (SHJ) solar cells are fabricated with 13% efficiency using hot-wire chemical vapor deposition (HWCVD) method. This paper also describes an energy management model that successfully addresses the various issues in the existing energy harvesting models. In order to implement the proposed model, the results show that the high efficiency SHJ solar cells are best suitable candidate as an energy harvesting device that can be incorporated inside the node. The subsequent analysis shows that the consumed power per day by the node can be successfully recovered from the SHJ solar cells, if the sunlight is available only for 25 min in a day with 100 mW/cm2 intensity. This clearly indicates that the node's battery will remain fully charged if the above said condition is satisfied, which seems to be very feasible. Finally, one can conclude that the node functioning will remain active till the battery lifetime i.e., approximately 30 years for Li-ion battery.

References

1.
Khan
,
I.
,
Belqasmi
,
F.
,
Glitho
,
R.
,
Crespi
,
N.
,
Morrow
,
M.
, and
Polako
,
P.
,
2015
, “
Wireless Sensor Network Virtualization: A Survey
,”
Comput. Sci.
,
18
(1), pp. 553–576.
2.
Steiner
,
R. V.
, and
Lupu
,
E.
,
2016
, “
Attestation in Wireless Sensor Networks: A Survey
,”
ACM Comput. Surv. (CSUR)
,
49
(
3
), p.
51
.
3.
Liang
,
C.
, and
Yu
,
F. R.
,
2015
, “
Wireless Network Virtualization: A Survey, Some Research Issues and Challenges
,”
IEEE Commun. Surv. Tutorials
,
17
(
1
), pp.
358
380
.
4.
Munjal
,
A.
,
Tripathi
,
R. K.
, and
Singh
,
Y.
,
2014
, “
Balancing Energy Consumption Using Cluster Based Approach in Wireless Sensor Network
,”
20th National Conference on the Communications
(
NCC
), Kanpur, India, Feb. 28–Mar. 2.
5.
More
,
A.
,
Wagh
,
S.
, and
Joshi
,
K.
,
2015
, “
A Test-Bed for Habitat Monitoring System Using Wi-Fi in Wireless Sensor Networks
,”
IEEE International Conference on Computational Intelligence and Computing Research
(
ICCIC
), Madurai, India, Dec. 10–12.
6.
Ahmad
,
I.
,
Shah
,
K.
, and
Ullah
,
S.
,
2016
, “
Military Applications Using Wireless Sensor Networks: A Survey
,”
Int. J. Eng. Sci.
,
6
(6), p.
7039
.http://ijesc.org/upload/bb8c23649ce0d33a4dfa6a9141d28f50.Military%20Applications%20using%20Wireless%20Sensor%20Networks%20A%20survey.pdf
7.
Srbinovska
,
M.
,
Gavrovski
,
C.
,
Dimcev
,
V.
,
Krkoleva
,
A.
, and
Borozan
,
V.
,
2015
, “
Environmental Parameters Monitoring in Precision Agriculture Using Wireless Sensor Networks
,”
J. Cleaner Prod.
,
88
, pp.
297
307
.
8.
Fadel
,
E.
,
Gungor
,
V.
,
Nassef
,
L.
,
Akkari
,
N.
,
Maik
,
M. A.
,
Almasri
,
S.
, and
Akyildiz
,
I. F.
,
2015
, “
A survey on Wireless Sensor Networks for Smart Grid
,”
Comput. Commun.
,
71
, pp.
22
33
.
9.
Whitmore
,
A.
,
Agarwal
,
A.
, and
Da Xu
,
L.
,
2015
, “
The Internet of Things—A Survey of Topics and Trends
,”
Inf. Syst. Front.
,
17
(
2
), pp.
261
274
.
10.
Heinzelman
,
W. R.
,
Chandrakasan
,
A.
, and
Balakrishnan
,
H.
,
2000
, “
Energy-Efficient Communication Protocol for Wireless Microsensor Networks
,”
33rd Annual Hawaii International Conference on System Sciences
, Maui, HI, Jan. 7.
11.
Singh
,
A. K.
,
Purohit
,
N.
, and
Varma
,
S.
,
2014
, “
Analysis of Lifetime of Wsensor Network With Base Station Moving on Different Paths
,”
Int. J. Electron.
,
101
(
5
), pp.
605
620
.
12.
Champ
,
J.
,
Saad
,
C.
, and
Baert
,
E.
,
2009
, “
Dynamic Localized Broadcast Incremental Power Protocol and Lifetime in Wireless Ad Hoc and Sensor Networks
,”
International Conference on Complex, Intelligent and Software Intensive Systems (CISIS'09)
, Burgos, Spain, Sept. 23–26.
13.
Chen
,
Y.
, and
Zhao
,
Q.
,
2005
, “
On the Lifetime of Wireless Sensor Networks
,”
IEEE Commun. Lett.
,
9
(
11
), pp.
976
978
.
14.
Cardei
,
M.
,
Wu
,
J.
,
Lu
,
M.
, and
Pervaiz
,
M. O.
,
2005
, “
Maximum Network Lifetime in Wireless Sensor Networks with Adjustable Sensing Ranges
,”
IEEE International Conference on Wireless and Mobile Computing, Networking and Communications
(
WiMob
), Montreal, QC, Canada, Aug. 22–24.
15.
Schurgers
,
C.
, and
Srivastava
,
M. B.
,
2001
, “
Energy Efficient Routing in Wireless Sensor Networks
,” Communications for Network-Centric Operations: Creating the Information Force, IEEE Military Communications Conference (
MILCOM
2001), McLean, VA, Oct. 28–31.
16.
Gupta
,
G.
, and
Younis
,
M.
,
2003
, “
Load-Balanced Clustering of Wireless Sensor Networks
,”
IEEE International Conference on the Communications
(
ICC'03
), Anchorage, AK, May 11–15.
17.
Soro
,
S.
, and
Heinzelman
,
W. B.
,
2005
, “
Prolonging the Lifetime of Wireless Sensor Networks Via Unequal Clustering
,” 19th
IEEE
International Parallel and Distributed Processing Symposium
, Denver, CO, Apr. 4–8.
18.
Seah
,
W. K.
,
Eu
,
Z. A.
, and
Tan
,
H. P.
,
2009
, “
Wireless Sensor Networks Powered by Ambient Energy Harvesting (WSN-HEAP) - Survey and Challenges
,”
First International Conference on the Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology
(
Wireless VITAE
), Aalborg, Denmark, May 17–20.
19.
Niyato
,
D.
,
Hossain
,
E.
,
Rashid
,
M. M.
, and
Bhargava
,
V. K.
,
2007
, “
Wireless Sensor Networks With Energy Harvesting Technologies: A Game-Theoretic Approach to Optimal Energy Management
,”
IEEE Wireless Commun.
,
14
(
4
), pp.
90
96
.
20.
Paradiso
,
J. A.
, and
Starner
,
T.
,
2005
, “
Energy Scavenging for Mobile and Wireless Electronics
,”
IEEE Pervasive Comput.
,
4
(
1
), pp.
18
27
.
21.
Dondi
,
D.
,
Bertacchini
,
A.
,
Brunelli
,
D.
,
Larcher
,
L.
, and
Benini
,
L.
,
2008
, “
Modeling and Optimization of a Solar Energy Harvester System for Self-Powered Wireless Sensor Networks
,”
IEEE Trans. Ind. Electron.
,
55
(
7
), pp.
2759
2766
.
22.
Alippi
,
C.
, and
Galperti
,
C.
,
2008
, “
An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes
,”
IEEE Trans. Circuits Syst. I
,
55
(
6
), pp.
1742
1750
.
23.
Raghunathan
,
V.
,
Kansal
,
A.
,
Hsu
,
J.
,
Friedman
,
J.
, and
Srivastava
,
M.
,
2005
, “
Design Considerations for Solar Energy Harvesting Wireless Embedded Systems
,”
Fourth International Symposium on Information Processing in Sensor Networks
(
ISPN
), Boise, ID, Apr. 15.
24.
Romer
,
K.
, and
Mattern
,
F.
,
2004
, “
The Design Space of Wireless Sensor Networks
,”
IEEE Wireless Commun.
,
11
(
6
), pp.
54
61
.
25.
Knight
,
C.
,
Davidson
,
J.
, and
Behrens
,
S.
,
2008
, “
Energy Options for Wireless Sensor Nodes
,”
Sensors
,
8
(
12
), pp.
8037
8066
.
26.
Yu
,
H.
,
Li
,
Y.
,
Shang
,
Y.
, and
Su
,
B.
,
2008
, “
Design and Investigation of Photovoltaic and Thermoelectric Hybrid Power Source for Wireless Sensor Networks
,”
Third IEEE International Conference on Nano/Micro Engineered and Molecular Systems
(
NEMS
2008), Sanya, China, Jan. 6–9.
27.
Zhao
,
J.
,
Wang
,
A.
,
Altermatt
,
P. P.
,
Wenham
,
S. R.
, and
Green
,
M. A.
,
1996
, “
Extended Infrared Response of Silicon Solar Cells and the Impurity Photovoltaic Effect
,”
Sol. Energy Mater. Sol. Cells
,
41–42
, pp.
87
99
.
28.
De Wolf
,
S.
,
Descoeudres
,
A.
,
Holman
,
Z. C.
, and
Ballif
,
C.
,
2012
, “
High-Efficiency Silicon Heterojunction Solar Cells: A Review
,”
Green
,
2
(
1
), pp.
7
24
.
29.
Masuko
,
K.
,
Shigematsu
,
M.
,
Hashiguchi
,
T.
,
Fujishima
,
D.
,
Kai
,
M.
,
Yoshimura
,
N.
,
Yamaguchi
,
T.
,
Ichihashi
,
Y.
,
Mishima
,
T.
, and
Matsubara
,
N.
,
2014
, “
Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell
,”
IEEE J. Photovolt.
,
4
(
6
), pp.
1433
1435
.
30.
Wolf
,
S. D.
,
Geissbuehler
,
J.
,
Loper
,
P.
,
Martin de Nicholas
,
S.
,
Seif
,
J.
,
Tomasi
,
A.
, and
Ballif
,
C.
, 2016, “
Efficient Monolithic Perovskite/Silicon Tandem Solar Cell With Cell Area >1 cm2
,”
J. Phys. Chem. Lett.
,
7
(1), pp. 161–166.
31.
Aberle
,
A. G.
,
2000
, “
Surface Passivation of Crystalline Silicon Solar Cells: A Review
,”
Prog. Photovolt.: Res. Appl.
,
8
(
5
), pp.
473
487
.
32.
Cammarano
,
A.
,
Petrioli
,
C.
, and
Spenza
,
D.
,
2012
, “
Wireless Sensor Networks With Energy Harvesting
,”
IEEE Ninth International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012)
, Las Vegas, NV, Oct. 8–11.
33.
Abbas
,
M. M.
,
Tawhid
,
M. A.
,
Saleem
,
K.
,
Muhammad
,
Z.
,
Saqib
,
N. A.
,
Malik
,
H.
, and
Mahmood
,
H.
, 2014, “
Solar Energy Harvesting and Management in Wireless Sensor Networks
,”
Int. J. Distributed Sensor Networks
,
10
(7), pp. 1–8.
34.
Seah
,
W. K.
, and
Chan
,
A. T. S.
,
2011
, “
Challenges in Protocol Design for Wireless Sensor Networks Powered by Ambient Energy Harvesting
,” Victoria University of Wellington, Wellington, New Zealand.
35.
Saggini
,
S.
,
Ongaro
,
F.
,
Galperti
,
C.
, and
Mattavelli
,
P.
,
2010
, “
Supercapacitor-Based Hybrid Storage Systems for Energy Harvesting in Wireless Sensor Networks
,”
25th Annual IEEE Applied Power Electronics Conference and Exposition
(
APEC
), Palm Springs, CA, Feb. 21–25.
36.
Louwen
,
A.
,
Sarka
,
W.
,
Schropp
,
R.
, and
Faaij
,
A.
,
2016
, “
A Cost Roadmap for Silicon Heterojunction Solar Cells
,”
Sol. Energy Mater. Sol. Cells
,
147
, pp.
295
314
.
You do not currently have access to this content.