This study investigates the efficiency of application of phase change materials (PCMs) in a solar cooling system. The proposed system consists of an adsorption chiller and a latent heat storage unit (LHSU) containing PCMs. The PCM stores solar energy during daytime and at nighttime, the thermal energy stored in the PCM is utilized to drive the adsorption chiller. An auxiliary heater is also used to provide the required energy in addition to the LHSU. To verify the accuracy of the obtained results, the modeling of the solar adsorption system and the PCM unit are validated separately. Moreover, the whole system performance is verified by evaluation of the conservation of energy in the system. The performance of the system is compared with a similar solar adsorption chiller lacking LHSU. Also, the parameters which affect the performance of the LHSU are studied. It is found that application of LHSU decreases auxiliary energy consumption and increases solar fraction. Solar fraction goes up more if larger amount of PCM is used. However, there exists a maximum mass of PCM which can be charged during the sunshine hours. The maximum chargeable mass of PCM goes up by increasing the solar collector area, which leads to decreasing auxiliary energy consumption and increasing solar fraction. The results also show that enlargement of the hot water storage tank reduces auxiliary energy consumption and enhances solar fraction, but decreases thermal storage efficiency. In order to achieve higher thermal storage efficiency and also less auxiliary energy consumption, it is suggested to use average-sized hot water storage tanks.

References

1.
Fernandes
,
M. S.
,
Brites
,
G. J. V. N.
,
Costa
,
J. J.
,
Gaspar
,
A. R.
, and
Costa
,
V. A. F.
,
2014
, “
Review and Future Trends of Solar Adsorption Refrigeration Systems
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
102
123
.
2.
Chua
,
H. T.
,
Ng
,
K. C.
,
Malek
,
A.
,
Kashiwagi
,
T.
,
Akisawa
,
A.
, and
Saha
,
B. B.
,
1999
, “
Modeling the Performance of Two-Bed, Sillica Gel-Water Adsorption Chillers
,”
Int. J. Refrig.
,
22
(
3
), pp.
194
204
.
3.
Wang
,
D. C.
,
Xia
,
Z. Z.
,
Wu
,
J. Y.
,
Wang
,
R. Z.
,
Zhai
,
H.
, and
Dou
,
W. D.
,
2005
, “
Study of a Novel Silica Gel–Water Adsorption Chiller. Part I. Design and Performance Prediction
,”
Int. J. Refrig.
,
28
(
7
), pp.
1073
1083
.
4.
Wang
,
L. W.
,
Wang
,
R. Z.
, and
Oliveira
,
R. G.
,
2009
, “
A Review on Adsorption Working Pairs for Refrigeration
,”
Renewable Sustainable Energy Rev.
,
13
(
3
), pp.
518
534
.
5.
Askalany
,
A. A.
,
Salem
,
M.
,
Ismael
,
I. M.
,
Ali
,
A. H. H.
,
Morsy
,
M. G.
, and
Saha
,
B. B.
,
2013
, “
An Overview on Adsorption Pairs for Cooling
,”
Renewable Sustainable Energy Rev.
,
19
, pp.
565
572
.
6.
Henninger
,
S. K.
,
Jeremias
,
F.
,
Kummer
,
H.
,
Schossig
,
P.
, and
Henning
,
H.-M.
,
2012
, “
Novel Sorption Materials for Solar Heating and Cooling
,”
Energy Procedia
,
30
, pp.
279
288
.
7.
Rezk
,
A.
,
Al-Dadah
,
R.
,
Mahmoud
,
S.
, and
Elsayed
,
A.
,
2012
, “
Characterisation of Metal Organic Frameworks for Adsorption Cooling
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7366
7374
.
8.
Habib
,
K.
,
Saha
,
B. B.
, and
Koyama
,
S.
,
2014
, “
Study of Various Adsorbent–Refrigerant Pairs for the Application of Solar Driven Adsorption Cooling in Tropical Climates
,”
Appl. Therm. Eng.
,
72
(
2
), pp.
266
274
.
9.
Wu
,
J. Y.
, and
Li
,
S.
,
2009
, “
Study on Cyclic Characteristics of Silica Gel–Water Adsorption Cooling System Driven by Variable Heat Source
,”
Energy
,
34
(
11
), pp.
1955
1962
.
10.
Zhai
,
X. Q.
, and
Wang
,
R. Z.
,
2009
, “
Experimental Investigation and Theoretical Analysis of the Solar Adsorption Cooling System in a Green Building
,”
Appl. Therm. Eng.
,
29
(
1
), pp.
17
27
.
11.
Zhai
,
X. Q.
, and
Wang
,
R. Z.
,
2010
, “
Experimental Investigation and Performance Analysis on a Solar Adsorption Cooling System With/Without Heat Storage
,”
Appl. Energy
,
87
(
3
), pp.
824
835
.
12.
Zhang
,
G.
,
Wang
,
D. C.
,
Zhang
,
J. P.
,
Han
,
Y. P.
, and
Sun
,
W.
,
2011
, “
Simulation of Operating Characteristics of the Silica Gel–Water Adsorption Chiller Powered by Solar Energy
,”
Sol. Energy
,
85
(
7
), pp.
1469
1478
.
13.
Alam
,
K. C. A.
,
Saha
,
B. B.
, and
Akisawa
,
A.
,
2013
, “
Adsorption Cooling Driven by Solar Collector: A Case Study for Tokyo Solar Data
,”
Appl. Therm. Eng.
,
50
(
2
), pp.
1603
1609
.
14.
El-Sharkawy
,
I. I.
,
AbdelMeguid
,
H.
, and
Saha
,
B. B.
,
2014
, “
Potential Application of Solar Powered Adsorption Cooling Systems in the Middle East
,”
Appl. Energy
,
126
, pp.
235
245
.
15.
Kenisarin
,
M.
, and
Mahkamov
,
K.
,
2007
, “
Solar Energy Storage Using Phase Change Materials
,”
Renewable Sustainable Energy Rev.
,
11
(
9
), pp.
1913
1965
.
16.
Zalba
,
B.
,
Marin
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.
17.
Kurklu
,
A.
,
Ozmerzi
,
A.
, and
Bilgin
,
S.
,
2002
, “
Thermal Performance of a Water-Phase Change Material Solar Collector
,”
Renewable Energy
,
26
(
3
), pp.
391
399
.
18.
Mettawee
,
E.
, and
Assassa
,
G.
,
2006
, “
Experimental Study of a Compact PCM Solar Collector
,”
Energy
,
31
(
14
), pp.
2958
2968
.
19.
Haillot
,
D.
,
Nepveu
,
F.
,
Goetz
,
V.
,
Py
,
X.
, and
Benabdelkarim
,
M.
,
2012
, “
High Performance Storage Composite for the Enhancement of Solar Domestic Hot Water Systems
,”
Sol. Energy
,
86
(
1
), pp.
64
77
.
20.
Mehling
,
H.
,
Cabeza
,
L. F.
,
Hippeli
,
S.
, and
Hiebler
,
S.
,
2003
, “
PCM-Module to Improve Hot Water Heat Stores With Stratification
,”
Renewable Energy
,
28
(
5
), pp.
699
711
.
21.
Cabeza
,
L. F.
,
Ibáñez
,
M.
,
Solé
,
C.
,
Roca
,
J.
, and
Nogués
,
M.
,
2006
, “
Experimentation With a Water Tank Including a PCM Module
,”
Sol. Energy Mater. Sol. Cells
,
90
(
9
), pp.
1273
1282
.
22.
Bony
,
J.
, and
Citherlet
,
S.
,
2007
, “
Numerical Model and Experimental Validation of Heat Storage With Phase Change Materials
,”
Energy Build.
,
39
(
10
), pp.
1065
1072
.
23.
Wu
,
S.
, and
Fang
,
G.
,
2011
, “
Dynamic Performances of Solar Heat Storage System With Packed Bed Using Myristic Acid as Phase Change Material
,”
Energy Build.
,
43
(
5
), pp.
1091
1096
.
24.
Nallusamy
,
N.
,
Sampath
,
S.
, and
Velraj
,
R.
,
2007
, “
Experimental Investigation on a Combined Sensible and Latent Heat Storage System Integrated With Constant/Varying (Solar) Heat Sources
,”
Renewable Energy
,
32
(
7
), pp.
1206
1227
.
25.
El Qarnia
,
H
.,
2009
, “
Numerical Analysis of a Coupled Solar Collector Latent Heat Storage Unit Using Various Phase Change Materials for Heating the Water
,”
Energy Convers. Manage.
,
50
(
2
), pp.
247
254
.
26.
Haillot
,
D.
,
Franquet
,
E.
,
Gibout
,
S.
, and
Bédécarrats
,
J.-P.
,
2013
, “
Optimization of Solar DHW System Including PCM Media
,”
Appl. Energy
,
109
, pp.
470
475
.
27.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1980
,
Solar Engineering of Thermal Processes
,
Wiley
,
New York
.
28.
Nijegorodov
,
N.
,
Devan
,
K. R. S.
,
Jain
,
P. K.
, and
Carlsson
,
S.
,
1994
, “
Atmospheric Transmittance Models and an Analytical Method to Predict the Optimum Slope of an Absorber Plate, Variously Oriented at Any Latitude
,”
Renewable Energy
,
4
(
5
), pp.
529
543
.
29.
Bejan
,
A.
,
1995
,
Convection Heat Transfer
,
Wiley
, New York.
30.
Voller
,
V. R.
,
1990
, “
Fast Implicit Finite-Difference Method for the Analysis of Phase Change Problems
,”
Int. J. Comput. Methodol.
,
17
, pp.
155
169
.
31.
Luo
,
H.
,
Wang
,
R.
, and
Dai
,
Y.
,
2010
, “
The Effects of Operation Parameter on the Performance of a Solar-Powered Adsorption Chiller
,”
Appl. Energy
,
87
(
10
), pp.
3018
3022
.
32.
Moghadam
,
H.
,
Tabrizi
,
F. F.
, and
Sharak
,
A. Z.
,
2011
, “
Optimization of Solar Flat Collector Inclination
,”
Desalination
,
265
(
1–3
), pp.
107
111
.
33.
Lacroix
,
M
.,
1993
, “
Study of the Heat Transfer Behavior of a Latent Heat Thermal Energy Storage Unit With a Finned Tube
,”
Int. J. Heat Mass Transfer
,
36
(
8
), pp.
2083
2092
.
34.
Rezk
,
A. R. M.
, and
Al-Dadah
,
R. K.
,
2012
, “
Physical and Operating Conditions Effects on Silica Gel/Water Adsorption Chiller Performance
,”
Appl. Energy
,
89
(
1
), pp.
142
149
.
35.
Buckley
,
R. C.
,
2012
, “
Development of an Energy Storage Tank Model
,” M.Sc. thesis, The University of Tennessee at Chattanooga, Chattanooga, TN.
36.
Sharma
,
A.
,
Sharma
,
S. D.
, and
Buddhi
,
D.
,
2002
, “
Accelerated Thermal Cycle Test of Acetamide, Stearic Acid and Paraffin Wax for Solar Thermal Latent Heat Storage Applications
,”
Energy Convers. Manage.
,
43
(
14
), pp.
1923
1930
.
37.
Calise
,
F.
,
d'Accadia
,
M. D.
, and
Vanoli
,
L.
,
2011
, “
Thermoeconomic Optimization of Solar Heating and Cooling Systems
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1562
1573
.
38.
Weather-Underground
,
2015
, “
Weather History and Data Archive
,” http://www.wunderground.com
You do not currently have access to this content.