A new concept for control of the flow field, and thus particle yield, in an aerosol reactor designed for the hydrolysis of Zn in the two-step Zn/ZnO solar thermochemical cycle for hydrogen production is described and evaluated. For the hydrolysis step, much attention has been given to Zn nanoscale reacting aerosols for their potential to increase conversion to ZnO and because they enable a continuous, controllable process. The success of this continuous process depends on achieving high particle yields in the reactor. A key challenge is to control the flow field in aerosol reactors to keep the particles entrained in the flow without deposition on the reactor wall. The ability of a new reactor concept based on transverse jet fluid dynamics to control the flow field and rapidly cool the Zn vapor is investigated. In the transverse jet reactor, evaporated Zn entrained in an Ar carrier gas issues vertically into the horizontal tubular reactor through which cooler H2O and Ar flow. Particles are formed in the presence of steam at ~450K. The trajectory of the jet is controlled via the effective velocity ratio, R, which is the square root of the ratio of the kinetic energy of the jet to that of the cross-flow. A computational fluid dynamics (CFD) model indicates that the trajectory of the jet can be controlled so that the majority of the Zn mass is directed down the center of the reactor, not near the reactor walls for R = 4.25 to R = 4.5. Experimentally, maximum particle yields of 93% of the mass entering the reactor are obtained at R = 4.5.

References

1.
Steinfeld
,
A.
,
2002
, “
Solar Hydrogen Production Via a Two-Step Water-Splitting Thermochemical Cycle Based on Zn-ZnO Redox Reactions
,”
Int. J. Hydrogen Energy
,
27
, pp.
611
619
.10.1016/S0360-3199(01)00177-X
2.
Steinfeld
,
A.
,
2005
, “
Solar Thermochemical Production of Hydrogen: A Review
,”
Sol. Energy
,
78
(5)
, pp.
603
615
.10.1016/j.solener.2003.12.012
3.
Keunecke
,
M.
,
Meier
,
A.
, and
Palumbo
,
R.
,
2004
, “
Solar Thermal Decomposition of Zinc Oxide: An Initial Investigation of the Recombination Reaction in the Temperature Range 1100-1250 K
,”
Chem. Eng. Sci.
,
59
, pp.
2695
2704
.10.1016/j.ces.2004.03.019
4.
Muller
,
R.
,
Haeberling
,
P.
, and
Palumbo
,
R. D.
,
2006
, “
Further Advances Toward the Development of a Direct Heating Solar Thermal Chemical Reactor for the Thermal Dissociation of Zno(s)
,”
Sol. Energy
,
80
, pp.
500
511
.10.1016/j.solener.2005.04.015
5.
Weidenkaff
,
A.
,
Steinfeld
,
A.
,
Wokaun
,
A.
,
Auer
,
P.
,
Eichler
,
B.
, and
Reller
,
A.
,
1999
, “
Direct Solar Thermal Dissocation of Zinc Oxide: Condensation and Crysallisation of Zinc in the Presence of Oxygen
,”
Sol. Energy
,
65
, pp.
59
69
.10.1016/S0038-092X(98)00088-7
6.
Gstoehl
,
D.
,
Brambilla
,
A.
,
Schunk
,
L. O.
, and
Steinfeld
,
A.
,
2008
, “
A Quenching Apparatus for the Gaseous Products of the Solar Thermal Dissociation of ZnO
,”
J. Mater. Sci.
,
43
, pp.
4729
4736
.10.1007/s10853-007-2351-x
7.
Venstrom
,
L.
, and
Davidson
,
J. H.
,
2011
, “
Splitting Water and Carbon Dioxide Via the Heterogenous Oxidation of Zinc Vapor: Thermodynamic Considerations
,”
ASME J. Solar Energy Eng.
,
133
, p.
011017
.10.1115/1.4003417
8.
Loutzenhiser
,
P. G.
,
Galvez
,
M. E.
,
Hirschier
,
I.
,
Graf
,
A.
, and
Steinfeld
,
A.
,
2010
, “
Co2 Splitting in an Aerosol Flow Reactor Via the Two-Step Zn/Zno Solar Thermochemical Cycle
,”
Chem. Eng. Sci.
,
65
, pp.
1855
1864
.10.1016/j.ces.2009.11.025
9.
Loutzenhiser
,
P. G.
,
Barthel
,
F.
,
Stamatiou
,
A.
, and
Steinfeld
,
A.
,
2011
, “
Co2 Reduction With Zn Particles in a Packed-Bed Reactor
,”
AIChE J.
,
57
, pp.
2529
2534
.10.1002/aic.12460
10.
Loutzenhiser
,
P. G.
,
Stamatiou
,
A.
,
Villasmil
,
W.
,
Meier
,
A.
, and
Aldo
,
S.
,
2011
, “
Concentrated Solar Energy for Thermochemically Producing Liquid Fuels From Co2 and H2O
,”
JOM
,
63
, pp.
32
34
.10.1007/s11837-011-0008-3
11.
Loutzenhiser
,
P. G.
, and
Steinfeld
,
A.
,
2011
, “
Solar Syngas Production From Co2 and H2O in a Two-Step Thermochemical Cycle Via Zn/Zno Redox Reactions: Thermochemical Cycle Analysis
,”
Int. J. Hydrogen Energy
,
36
, pp.
12141
12147
.10.1016/j.ijhydene.2011.06.128
12.
Delalu
,
H.
,
Vingalou
,
J.
,
Elkhatib
,
M.
, and
Metz
,
R.
,
2000
, “
Kinetics and Modeling of Diffusion Phenomena Occuring During the Complete Oxidation of Zinc Powder: Influence of Granulometry, Temperature and Relative Humidity of the Oxidizing Fluid
,”
Solid State Sci.
,
2
, pp.
229
235
.10.1016/S1293-2558(00)00130-8
13.
Alimenti
,
G.
,
Gschaider
,
M.
,
Bazan
,
J.
, and
Ferreira
,
M.
,
2004
, “
Theoretical and Experimental Study of the Interaction of O2 and H2O With Metallic Zinc—Discussion of the Initial Step of Oxide Formation
,”
J. Colloid Interface Sci.
,
276
, pp.
24
38
.10.1016/j.jcis.2004.03.042
14.
Bazan
,
J.
,
Gschaider
,
M.
, and
Alimenti
,
G.
,
1999
, “
Gravimetric Study of Interaction of Water Vapour With Metallic Zinc
,”
J. Therm Anal. Calorim.
,
55
, pp.
569
579
.10.1023/A:1010110306306
15.
Berman
,
A.
, and
Epstein
,
M.
,
2000
, “
The Kinetics of Hydrogen Production in the Oxidation of Liquid Zinc With Water Vapor
,”
Int. J. Hydrogen Energy
,
25
, pp.
957
967
.10.1016/S0360-3199(00)00015-X
16.
Weidenkaff
,
A.
,
Rellera
,
A.
,
Wokaunb
,
A.
, and
Steinfeld
,
A.
,
2000
, “
Thermogravimetric Analysis of the ZnO/Zn Water Splitting Cycle
,”
Thermochim. Acta
,
359
, pp.
69
75
.10.1016/S0040-6031(00)00508-6
17.
Vishnevetsky
,
I.
, and
Epstein
,
M.
,
2007
, “
Production of Hydrogen From Solar Zinc in Steam Atmosphere
,”
Int. J. Hydrogen Energy
,
32
, pp.
2791
2802
.10.1016/j.ijhydene.2007.04.004
18.
Ernst
,
F. O.
,
Steinfeld
,
A.
, and
Pratsinis
,
S.
,
2009
, “
Hydrolysis Rate of Submicron Zn Particles for Solar H2 Synthesis
,”
Int. J. Hydrogen Energy
,
34
, pp.
1166
1175
.10.1016/j.ijhydene.2008.11.098
19.
Weiss
,
R. J.
,
Ly
,
H. C.
,
Wegner
,
K.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
,
2005
, “
H2 Production by Zn Hydrolysis in a Hot-Wall Aerosol Reactor
,”
Am. Inst. Chem. Eng.: Part. Technol. Fluidization
,
51
, pp.
1966
1970
.10.1002/aic.10437
20.
Wegner
,
K.
,
Ly
,
H. C.
,
Weiss
,
R. J.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
,
2006
, “
In Situ Formation and Hydrolysis of Zn Nanoparticles for H2 Production by the 2-Step ZnO/Zn Water-Splitting Thermochemical Cycle
,”
Int. J. Hydrogen Energy
,
31
, pp.
55
61
.10.1016/j.ijhydene.2005.03.006
21.
Ernst
,
F. O.
,
Tricoli
,
A.
,
Pratsinis
,
S. E.
, and
Steinfeld
,
A.
,
2006
, “
Co-Synthesis of H2 and Zno by In-Situ Zn Aerosol Formation and Hydrolysis
,”
Am. Inst. Chem. Eng.
,
52
(9)
, pp.
3297
3303
.10.1002/aic.10915
22.
Melchior
,
T.
,
Piatkowski
,
N.
, and
Steinfeld
,
A.
,
2009
, “
H2 Production by Steam-Quenching of Zn Vapor in a Hot-Wall Aerosol Flow Reactor
,”
Chem. Eng. Sci.
,
64
, pp.
1095
1101
.10.1016/j.ces.2008.11.002
23.
Abu Hamed
,
T.
,
Davidson
,
J. H.
, and
Haltiwangermel
,
J. F.
,
2007
, “
Hydrogen Production Via Hydrolysis of Zinc Nanoparticles
,”
Proceedings of the American Institute of Chemical Engineers Conference
, Salt Lake City, UT, November 4–9, Paper No. 584e.
24.
Abu Hamed
,
T.
,
Venstrom
,
L.
,
Alshare
,
A.
,
Brulhart
,
M.
, and
Davidson
,
J. H.
,
2009
, “
Study of a Quench Device for Synthesis and Hydrolysis of Zn Nanoparticles: Modeling and Experiments
,”
J. Sol. Energy Eng.
,
131
, p.
031018
.10.1115/1.3142825
25.
Funke
,
H. H.
,
Diaz
,
H.
,
Liang
,
X.
,
Carney
,
C. S.
,
Weimer
,
A. W.
, and
Li
,
P.
,
2008
, “
Hydrogen Generation by Hydrolysis of Zinc Power Aerosol
,”
Int. J. Hydrogen Energy
,
33
, pp.
1127
1134
.10.1016/j.ijhydene.2007.12.061
26.
Park
,
K.
,
Lee
,
D.
,
Rai
,
A.
,
Mukherjee
,
D.
, and
Zachariah
,
M.
,
2005
, “
Size-Resolved Kinetic Measurements of Aluminum Nanoparticle Oxidation With Single Particle Mass Spectrometry
,”
J. Phys. Chem.
,
109
, pp.
7290
7299
.10.1021/jp0516339
27.
Rai
,
A.
,
Park
,
K.
,
Zhou
,
L.
, and
Zachariah
,
M.
,
2006
, “
Understanding the Mechanism of Aluminium Nanoparticle Oxidation
,”
Combust. Theory Modell.
,
10
(
5
), pp.
843
859
.10.1080/13647830600800686
28.
Girshick
,
S.
, and
Chiu
,
C.
,
1989
, “
Homogeneous Nucleation of Particles From the Vapor Phase in Thermal Plasma Synthesis
,”
Plasma Chem. Plasma Process.
,
9
, pp.
355
369
.10.1007/BF01083672
29.
Panda
,
S.
, and
Pratsinis
,
S. E.
,
1995
, “
Modeling the Synthesis of Aluminum Particles by Evaporation-Condensation in an Aerosol Flow Reactor
,”
Nanostruct. Mater.
,
5
, pp.
755
767
.10.1016/0965-9773(95)00292-M
30.
Ramsey
,
J. W.
, and
Goldstein
,
R. J.
,
1971
, “
Interaction of a Heated Jet With a Deflecting Stream
,”
J. Heat Transfer
,
93
(4)
, pp.
365
372
.10.1115/1.3449832
31.
Crabb
,
D.
,
Durao
,
D. F. G.
, and
Whitelaw
,
J. H.
,
1981
, “
A Round Jet Normal to a Crossflow
,”
J. Fluids Eng.
,
103
, pp.
142
153
.10.1115/1.3240764
32.
Andreopoulos
,
J.
,
1982
, “
Measurments in a Jet-Pipe Flow Issuing Perpendicularly Into a Cross Stream
,”
J. Fluids Eng.
,
104
, pp.
493
499
.10.1115/1.3241892
33.
Andreopoulos
,
J.
, and
Rodi
,
W.
,
1984
, “
Experimental Investigation of Jets in a Crossflow
,”
J. Fluid Mech.
,
138
, pp.
93
127
.10.1017/S0022112084000057
34.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
, pp.
1
47
.10.1017/S0022112094003800
35.
Camussi
,
R.
,
Guj
,
G.
, and
Stella
,
A.
,
2002
, “
Experimental Study of a Jet in a Crossflow at Very Low Reynolds Number
,”
J. Fluid Mech.
,
454
, pp.
113
144
.10.1017/S0022112001007005
36.
Kelso
,
M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.10.1017/S0022112096001255
37.
Margason
,
R. J.
,
1993
, “
Fifty Years of Jet in Cross Flow Research
,”
AGARD Symposium on a Jet in Cross Flow
,
Winchester, UK
, AGARD CP-534.
38.
Yuan
,
L. L.
, and
Street
,
R. L.
,
1998
, “
Trajectory and Entrainment of a Round Jet in Crossflow
,”
Phys. Fluids
,
10
, pp.
2323
2335
.10.1063/1.869751
39.
He
,
G.
,
Guo
,
Y.
, and
Hsu
,
A.
,
1999
, “
The Effect of Schmidt Number on Turbulent Scalar Mixing in a Jet-in-Crossflow
,”
Int. J. Heat Mass Transfer
,
42
, pp.
3727
3738
.10.1016/S0017-9310(99)00050-2
40.
Muppidi
,
S.
, and
Mahesh
,
K.
,
2005
, “
Study of Trajectories of Jets in Crossflow Using Direct Numerical Simulations
,”
J. Fluid Mech.
,
530
, pp.
81
100
.10.1017/S0022112005003514
41.
Magnusson
,
M.
,
Deppert
,
K.
,
Malm
,
J.
,
Bovin
,
J.
, and
Samuelson
,
L.
,
1999
, “
Gold Nanoparticles: Production, Reshaping, and Thermal Charging
,”
J. Nanopart. Res.
,
1
, pp.
234
251
.10.1023/A:1010012802415
42.
Schlichting
,
H.
; and
Gersten
,
K.
,
1979
,
Boundary-Layer Theory
, 7th ed.,
Springer
,
New York
.
43.
Haltiwanger
,
J. F.
,
2011
, “
Zinc Hydrolysis in a Transverse Jet Reactor
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
44.
Haltiwanger
,
J. F.
,
Venstrom
,
L.
, and
Davidson
,
J. H.
,
2009
, “
A Discussion of the Measurement of Zn to ZnO Conversion in Aerosol Reactors
,” Proceedings of ES2009, Energy Sustainability, San Francisco, CA, July 19–23,
ASME
Paper No. ES2009-90400, pp. 483-489. 10.1115/ES2009-90400
45.
Ansys, Inc.,
2011
, ANSYS FLUENT 13.0 User’s Manual.
46.
Cussler
,
E. L.
,
1997
,
Diffusion Mass Transfer in Fluid Systems
, 2nd ed.,
Cambridge University
,
Cambridge, UK
.
47.
Hinds
,
W. C.
,
1999
,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
, 2nd ed.,
John Wiley & Sons
, New York.
You do not currently have access to this content.