The SOLWATER reactor prototype is composed of two tubes containing a supported heterogeneous photocatalyst (Ahlstrom© paper impregnated with titanium dioxide), and two tubes containing a supported photosensitizer (designed and provided by G. Orellana, Universidad Complutense, Madrid, Spain). The tubes are placed on a CPC collector and run in series. Electricity is provided by a solar panel, and the recirculation rate is ca13Lmin1. Total volume in the feed tank plus tubes is 20L. The reactor was designed and constructed by the consortium of a European research project whose objective is on the development of a fully autonomous solar reactor system to purify drinking water in remote locations of developing countries. The prototype was placed in the yard of a shanty house in Los Pereyra, Tucumán, Argentina. Water to feed the reactor is taken from the shallow aquifer through an open well. This water is contaminated with high counts of coliforms and Enterococcus faecalis. It also contains widely variable levels of Pseudomonas aeruginosa. The chemical composition of the water shows high levels of natural organic matter and of various inorganic pollutants. The reactor has been running since February 22, 2005. This paper presents the results collected in three months of operation. Around 4hr operation on a sunny day, and 5-6hr on a cloudy day are required to totally destroy fecal coliforms and Ent. faecalis. Even 24h after the experiment is concluded, no cultivable bacteria are seen by the membrane filtration method (measured colony forming units after 24hr=0). On the other hand, a small number of total coliforms remain (a few percent or less of the original count) at the end of some of the latest experiments. Possible explanations for this result are the drop in ambient temperature, the decrease in solar irradiance, and the exhaustion of the catalyst and sensitizer. P. aeruginosa is much more resistant, and only partial destruction is observed in those time intervals. The evolution of chemical parameters is also presented and discussed.

1.
Schertenleib
,
R.
, and
Gujer
,
W.
, 2000, EAWAG News,
48
, pp.
3
5
.
2.
Blesa
,
M. A.
, 2001, “
Introducción
”,
Eliminación de Contaminantes por Fotocatálisis Heterogénea
,
Blesa
,
M. A.
, ed.,
Digital Graphic
,
La Plata, Argentina
.
3.
Blanco Gálvez
,
J.
, (coordinator) “
Cost effective solar photocatalytic technology to water decontamination and disinfection in rural areas of developing countries
,” http://www.psa.es/webeng/solwater/index/htmlhttp://www.psa.es/webeng/solwater/index/html
4.
Blesa
,
M. A.
, ed., 2001,
Eliminación de Contaminantes por Fotocatálisis Heterogénea
,
Digital Graphic
,
La Plata, Argentina
.
5.
Blake
,
D. M.
, 2005, “
Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds From Water and Air
,” National Renewable Energy Laboratory, NREL/TP-430–6084, http://www.nrel.gov/vehiclesandfuels/ancillary̱loads/pdfs/wateṟair.pdf-1512.9KBhttp://www.nrel.gov/vehiclesandfuels/ancillary̱loads/pdfs/wateṟair.pdf-1512.9KB
6.
Rincón
,
A. G.
,
Giraldo
,
S. A.
, and
Pulgarín
,
C.
, 2005, “
Desinfección de Agua por Fotocatálisis: Aspectos Básicos
,”
Tecnologías Solares para la Provisión de Agua Segura
,
Blesa
,
M. A.
, ed.,
Digital Graphic
,
La Plata, Argentina
, Chap. 13.
7.
Guimaraes
,
J. R.
,
Ibáñez
,
J.
,
Litter
,
M. I.
, and
Pizarro
,
R.
, “
Desinfección de Agua
,”
Eliminación de Contaminantes por Fotocatálisis Heterogénea
,
Blesa
,
M. A.
, ed.,
Digital Graphic
,
La Plata, Argentina
, pp.
305
316
.
8.
Ibáñez
,
J. A.
,
Litter
,
M. I.
, and
Pizarro
,
R. A.
, 2003, “
Photocatalytic Bactericidal Effect of TiO2 on Enterobacter Cloacae: Comparative Study With Other Gram (−) Bacteria
,”
J. Photochem. Photobiol., A
1010-6030,
157
, pp.
81
85
.
9.
Blake
,
D. M.
,
Maness
,
P. C.
,
Huang
,
Z.
,
Wolfrum
,
E. J.
, and
Huang
,
J.
, 1999, “
Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells
,”
Sep. Purif. Methods
0360-2540,
28
(
1
), pp.
1
50
.
10.
Sun
,
D. D
,
Taz
,
J. H.
, and
Tan
,
K. M.
, 2003, “
Photocatalytic Degradation of E. coliform in Water
,”
Water Res.
0043-1354,
37
,
3452
3462
.
11.
Collares Pereira
,
M.
,
Chaves
,
J.
, and
Correia de Oliveira
,
J.
, 2004, “
CPC Type collectors for Solar Energy Collection in Absorbers Immersed in a Liquid of Index of Refraction n
,” Portuguese Patent Application (AO SOL).
12.
Malato Rodríguez
,
S.
,
Blanco Gálvez
,
J.
,
Maldonado Rubio
,
M. I.
,
Fernández Ibáñez
,
P.
,
Alarcón Padilla
,
D.
,
Collares Pereira
,
M.
,
Farinha Mendes
,
J.
, and
Correia de Oliveira
,
J.
, 2004, “
Engineering of Solar Photocatalytic Collectors
,”
Sol. Energy
0038-092X,
77
,
513
524
.
13.
Hoffmann
,
M. R.
,
Martin
,
S. T.
,
Choi
,
W. Y.
, and
Bahnemann
,
D. W.
, 1995, “
Environmental Applications of Semiconductor Photocatalysis
,”
JAMA, J. Am. Med. Assoc.
0098-7484,
95
,
69
96
.
14.
Litter
,
M. I.
, 2005, “
Introduction to Photochemical Advanced Oxidation Processes for Water Treatment
,”
The Handbook of Environmental Chemistry
,
Bahnemann
,
D.
, and
Boule
,
P.
(eds.),
Springer-Verlag
,
Berlin
(in press) Vol.
2
,
Part H: Environmental Photochemistry Part II
.
15.
Fernandez
,
P.
,
Blanco
,
J.
,
Sichel
,
C.
, and
Malato
,
S.
, 2005, “
Water Disinfection by Solar Photocatalysis Using Compound Parabolic Collectors
,”
Catal. Today
0920-5861,
101
, pp.
345
352
.
16.
Gumy
,
D.
,
Rincon
,
A. G.
,
Hajdu
,
R.
, and
Pulgarin
,
C.
, 2006, “
Solar Photocatalysis for Detoxification and Disinfection of Water: Different Types of Suspended and Fixed TiO2 Catalysts Study
,”
Sol. Energy
0038-092X,
80
, pp.
1376
1381
.
17.
Jimenez-Hernandez
,
M. E.
,
Manjón
,
F.
,
García-Fresnadillo
,
D.
, and
Orellana
,
G.
, 2005, “
Solar Water Disinfection by Singlet Oxigen Photogenerated With Polymer-Supported Ru(II) Sensitizers
,”
Sol. Energy
0038-092X,
80
,
1382
1387
.
18.
Ahlstrom
, 1999, European Patent No. EP1069950B1.
19.
Orellana-Moraleda
,
G.
,
Jiménez-Hernández
,
M. E.
, and
García Fresnadillo
,
D.
, 2003, “
Photocatalytic Material and Method for Water Disinfection
,” Spanish Patent Application Ref. P200302136 (Universidad Complutense de Madrid).
20.
Blanco
,
J.
,
Malato
,
S.
,
Fernández
,
P.
,
Vidal
,
A.
,
Morales
,
A.
,
Trincado
,
P.
,
Oliveira
,
J. C.
,
Minero
,
C.
,
Musci
,
M.
,
Casalle
,
C.
,
Brunotte
,
M.
,
Tratzky
,
S.
,
Dischinger
,
N.
,
Funken
,
H. K.
,
Sattler
,
C.
,
Vincent
,
M.
,
Collares-Pereira
,
M.
,
Mendes
,
J. F.
, and
Rangel
,
C. M.
, 1999, “
Compound Parabolic Concentrator Technology Development to Commercial Solar Detoxification Applications
,”
Sol. Energy
0038-092X,
67
, pp.
317
330
.
21.
Ajona
,
J. I.
, and
Vidal
,
A.
, 2000, “
The Use of CPC Collectors for Detoxification of Contaminated Water: Design, Construction and Preliminary Results
,”
Sol. Energy
0038-092X,
68
, pp.
109
120
.
22.
Orce
,
L. V.
,
Helbling
,
E. W.
, and
Paladini
,
A.
, 1997, “
Latitudinal UVR-PAR Measurements in Argentina: Extent of the Ozone Hole
,”
Glob. Planet. Change
0921-8181,
15
, pp.
113
121
.
23.
Benhard
,
G
,
Booth
,
C. R.
, and
Ehramijan
,
C. J.
, 2004, “
Real Time UV and Column Ozone From Multichannel UV Radiometers Deployed in the National Science Foundation’s UV Monitoring Network
,” Biospherical Instruments, www.biospherical.com
24.
Christos
,
S. Z.
, and
Alkivadis
,
F
, 1995,
Solar Ultraviolet Radiation, Modeling, Measurements and Effects
,
Springer-Verlag
,
Berlin, Germany
,
NATO ASI Series. Series I: Global Environmental Change
, Vol.
52
.
25.
Bais
,
A. F.
,
Madronich
,
S.
, and
Crawford
,
J.
, 2003, “
International Photolysis Frequency Measurement and Model Intercomparison: Spectral Actinic Solar Flux Measurements and Modeling
,”
J. Geophys. Res.
0148-0227
108
, (
D16
), p.
8543
8559
26.
Ogunjobi
,
K. O.
, and
Kim
,
Y. J.
, 2004, “
Ultraviolet (0.280-0.400μm) and Broadband Solar Hourly Radiation at Kwangju, South Korea: Analysis of Their Correlation With Aerosol Optical Depth and Clearness Index
,”
Atmos. Res.
0169-8095,
71
, pp.
193
241
.
27.
Martinez-Lozano
,
J. A.
,
Casanovas
,
A. J.
, and
Utrillas
,
M. P.
, 2002, “
Comparison of Global Ultraviolet (290-385nm) and Global Irradiation Measured During the Warm Season in Valencia, Spain
,”
Int. J. Climatol.
0899-8418,
14
, pp.
93
102
.
28.
Koronakis
,
P. S.
,
Sfantos
,
G. K.
,
Paliatsos
,
A. G.
,
Kaldellis
,
J. K.
,
Garofalakis
,
J. E.
, and
Koronaki
,
I. P.
, 2002, “
Interralations of UV-Global/Global/Diffuse/Solar Irradiance Components and UV-Global Attenuation on Air Pollution Episode Days in Athens, Greece
,”
Atmos. Environ.
1352-2310,
36
,
3173
3181
.
29.
Cañada
,
J.
,
Pedros
,
G.
, and
Bosca
,
J. V.
,
, 2003, “
Relationships Between UV (0.290-0.385μm) and Broadband Solar Radiation Hourly Values in Valencia and Córdoba, Spain
,”
Energy
0360-5442,
28
, pp.
199
217
.
30.
García
,
M. G.
,
Hidalgo
,
M.
,
Litter
,
M.
, and
Blesa
,
M.
, 2003, “
Remoción de As Mediante el Método RAOS en Los Pereyra, Provincia de Tucumán, Argentina
” Project No. OEA AE 141/2001,
9
24
.
31.
Garcia
,
M. G.
,
Hidalgo
,
M. del V.
,
Blesa
,
M. A.
, 2001, “
Geochemistry of Groundwater in the Alluvial Plain of Tucumán, Argentina
,”
Hydrogeol. J.
1431-2174,
9
(
6
), pp.
597
610
.
32.
Mon
,
R.
, and
Vergara
,
G.
, 1987. “
The Geothermal Area of the Eastern Border of the Andes of North Argentina at Tucumán Province
,”
Bull. Int. Assoc. Eng. Geol.
0074-1612,
35
, pp.
87
92
.
33.
Tineo
,
A.
,
Falcón
,
C.
,
García
,
J.
,
D’Urso
,
C.
,
Galindo
,
G.
, and
Rodríguez
,
G.
, 1998 “
Hidrogeología
,”
Geología de Tucumán
Gianfrancisco
,
M.
,
Puchulu
,
M. E.
,
Durango de Cabrera
,
J.
, and
Aceñolaza
,
G.
, ed. Colegio de Graduados en Ciencias Geológicas, Tucumán, pp.
259
274
.
34.
Battaglia
,
A.
, 1982, “
Descripción Geológica de la Hoja 13f, Río Hondo
,” Boletín 186, Servicio Geológico Nacional (Argentina).
35.
Warren
,
C. J.
, 2001, “
Hydrogeology and Water Quality of Los Pereyras, Tucumán, Argentina
,” M.Sc. thesis, University College London.
36.
Nicolli
,
H. B.
,
Tineo
,
A.
,
García
,
J. W.
,
Falcón
,
C. M.
,
Merino
,
M. H.
, 2001, “
Trace-Element Quality Problems in Groundwater From Tucumán, Argentina
,”
Water-Rock Interaction 2001
,
Cidu
,
R.
, ed.,
A. A. Balkema Publishers
,
Lisse, The Netherlands
, Vol.
2
, pp.
993
996
.
37.
García
,
M. G.
,
d’Hiriart
,
J.
,
Giullitti
,
J.
,
Lin
,
H.
,
Custo
,
G.
,
Hidalgo
,
M. del V.
,
Litter
,
M. I.
, and
Blesa
,
M. A.
, 2004, “
Solar Light Induced Removal of Arsenic From Contaminated Groundwater: The Interplay of Solar Energy and Chemical Variables
,”
Sol. Energy
0038-092X,
77
(
5
), pp.
601
613
.
38.
Grossi Gallegos
,
H.
, 1998, “
Distribución de la Radiación Solar Global en la República Argentina. II. Cartas de Radiación
,”
Energ Renov. y Med. Amb.
,
5
, pp.
33
41
.
39.
APHA
, 1992, “
Standard Methods for the Examination of Water and Wastewater
,”
American Public Health Association
, New York.
40.
Rodier
,
J.
, 1989,
Análisis de las Aguas
,
Omega
,
Barcelona
.
41.
Rincón
,
A. G.
, and
Pulgarin
,
C.
, 2004, “
Field Solar E. coli Inactivation in the Absence and Presence of TiO2: Is UV Solar dose an Appropriate Parameter for Standardization of Water Solar Disinfection?
,”
Sol. Energy
0038-092X,
77
, pp.
635
648
.
You do not currently have access to this content.