Conventional methods for the synthesis of fullerenes and carbon nanotubes such as laser or electric arc ablation have failed when the process is scaled up. Our ultimate goal is to scale a solar process up from 2 to 250 kW; this paper shows that our method for achieving this scale-up is valid because we were able to predict process performance variables at the 50 kW level from preliminary experimental results from 2 kW experiments. The key parameters that characterize this process are the carbon soot mass flow rate and the desired product yield. The carbon soot production rate is a function of the target temperature and this can be predicted in a straightforward way from a heat transfer model of the larger system. The yield is a more complicated function of specific reactor variables such as patterns of fluid flow, residence times at various temperatures, and the reaction chemistry, but we have found that for fullerenes it depends primarily on the concentration of carbon vapor in the carrier gas, the target temperature and the temperature distribution in the cooling zone. Using these parameters, we scaled our process up to 50 kW and compared the predicted results to the measured performance. A graphite target 6 cm in diameter was vaporized in an argon atmosphere and a reduced pressure of 120–240 hPa with a solar flux density in the range 600-920W/cm2. Vaporization rates as high as 50 g/h were measured with a fullerene production rate equal to about 2 g/h, i.e., the expected results.

1.
Subramoney, S., 1999, “Carbon Nanotubes-A Status Report,” Electrochem. Soc. Interface, pp. 34–37.
2.
Dillon
,
A.C.
,
Jones
,
K.M.
,
Bekkedahl
,
T.A.
,
Kiang
,
C.H.
,
Bethune
,
D.S.
, and
Heben
,
M.J.
,
1997
, “
Storage of Hydrogen in Single-Walled Carbon Nanotubes
,”
Nature (London)
,
36
, pp.
377
379
.
3.
Dai
,
H.
,
Hafner
,
J.H.
,
Rinzler
,
A.G.
,
Colbert
,
D.T.
, and
Smalley
,
R.E.
,
1996
, “
Nanotubes as Nanoprobes in Scanning Probe Microscopy
,”
Nature (London)
,
384
,
147
150
.
4.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
,
354
, pp.
56
58
.
5.
Guo
,
T.
,
Nikolaev
,
P.
,
Rinzler
,
A.G.
,
Tomanek
,
D.
,
Colbert
,
D.T.
, and
Smalley
,
R.E.
,
1995
,
J. Phys. Chem.
,
99
, p.
10694
10694
.
6.
Laplaze
,
D.
,
Bernier
,
P.
,
Maser
,
W.K.
,
Flamant
,
G.
,
Guillard
,
T.
, and
Loiseau
,
A.
,
1998
, “
Carbon Nanotubes: The Solar Approach
,”
Carbon
,
36, N°5–6
, pp.
685
688
.
7.
Steinfeld
,
A.
,
Kirrollov
,
V.
,
Kuvshinov
,
G.
,
Mogilnykh
,
Y.
, and
Reller
,
A.
,
1997
, “
Production of Filamentous Carbon and Hydrogen by Solar Thermal Catalytic Cracking of Methane
,”
Chem. Eng. Sci.
,
52
, No.
20
, pp.
3599
3603
.
8.
Journet
,
C.
,
Maser
,
W.K.
,
Bernier
,
P.
,
Loiseau
,
A.
,
Lamy de la Chapelle
,
M.
,
Lefrant
,
S.
,
Deniard
,
P.
,
Lee
,
R.
, and
Fischer
,
J.E.
,
1997
, “
Large-Scale Production of Single Wall-Walled Nanotubes by the Electric-Arc Technique
,”
Nature (London)
,
388
, pp.
756
758
.
9.
Rinzler
,
A.G.
,
Lim
,
J.
,
Dai
,
H.
,
Nikolaev
,
P.
,
Hoffman
,
C.B.
,
Rodriguez-Marias
,
F.J.
,
Boul
,
P.J.
,
Lu
,
A.H.
,
Heymann
,
D.
,
Colbert
,
D.T.
,
Lee
,
R.S.
,
Fischer
,
J.E.
,
Rao
,
A.M.
,
Eklund
,
P.C.
, and
Smalley
,
R.E.
,
1998
, “
Large Scale Purification of Single-Wall Carbon Nanotubes: Process, Product and Characterization
,”
Appl. Phys. A: Solids Surf.
,
67
, pp.
29
37
.
10.
Munoz
,
E.
,
Mazer
,
W.K.
,
Benito
,
A.M.
,
Martinez
,
M.T.
,
de la Fuente
,
G.F.
,
Righi
,
A.
,
Sauvajol
,
J.L.
,
Anglaret
,
E.
, and
Maniette
,
Y.
,
2000
, “
Single-Walled Carbon Nanotubes Produced by cw CO2 Laser Ablation: Study of Parameters Important for Their Formation
,”
Appl. Phys. A: Solids Surf.
,
70
, pp.
145
151
.
11.
Guillard
,
T.
,
Cetout
,
S.
,
Flamant
,
G.
, and
Laplaze
,
D.
,
2000
, “
Solar Production of Carbon Nanotubes, Structure Evolution with Experimental Conditions
,”
J. Mater. Sci.
,
35
, pp.
419
425
.
12.
Chibante
,
L.P.F.
,
Thess
,
A.
,
Alford
,
J.M.
,
Diener
,
M.D.
, and
Smalley
,
R.E.
,
1993
, “
Solar Generation of the Fullerenes
,”
J. Phys. Chem.
,
97
, pp.
8696
8700
.
13.
Fields
,
C.L.
,
Pitts
,
J.R.
,
Hale
,
M.J.
,
Bingham
,
C.
,
Lewandowski
,
A.
, and
King
,
D.E.
,
1993
, “
Formation of Fullerenes in Highly Concentrated Solar Flux
,”
J. Phys. Chem.
,
97
, pp.
8701
8702
.
14.
Fields, C.L., and Lewandowski, A., 1995, French-American Workshop in Odeillo, “C, Soot and Sun,” Oct. 8–12.
15.
Laplaze, D., Bernier, P., Barbenette, L., Lambert, J.M., Flamant, G., Lebrun, M., Brunelle, A., and Della-Negra, S., 1994, “Production de Fullerenes a` Partir de l’E´nergie Solaire: l’Expe´rience d’Odeillo,” Compte rendu Academie des Sciences, Paris, 318, se´rie II, pp. 733–738.
16.
Laplaze
,
D.
,
Bernier
,
P.
,
Flamant
,
G.
,
Lebrun
,
M.
,
Brunelle
,
A.
, and
Della-Negra
,
S.
,
1996
, “
Solar energy: application to the production of fullerenes
,”
J. Phys. B
,
29
, pp.
4943
4954
.
17.
Guillard
,
T.
,
Flamant
,
G.
, and
Laplaze
,
D.
,
2001
, “
Heat, mass and fluid flow in a solar reactor for fullerene synthesis
,”
J. Sol. Energy Eng.
,
123
, pp.
153
159
.
18.
Guillard, T., 2000, “Synthe`se de fullere`nes et nanotubes de carbone par e´nergie solaire: me´canismes de formation et proce´de´s d’e´laboration,” Ph.D. thesis, 25 October 2000, University of Perpignan, (France).
19.
Guillard
,
T.
,
Flamant
,
G.
,
Robert
,
J.F.
,
Rivoire
,
B.
,
Olalde
,
G.
,
Laplaze
,
D.
, and
Alvarez
,
L.
,
1999
, “
A large scale fullerene synthesis solar reactor, modeling and first experimental results
,”
J. Phys. IV
,
9
, pp. Pr3–
59/64
59/64
.
You do not currently have access to this content.