Research on solarthermal processing and the need for alternative energy sources have reached the point where efforts to develop some industrial processes and expand research to suggest others are at least desirable, if not imperative. This paper presents a rationale for such an effort, describes the underlying thermodynamics, and summarizes much of the research which has been conducted in the years since the end of World War II. Major emphasis is placed on the work that has been done since the imposition of the 1973 oil embargo and the present.

1.
Lede
,
J.
,
1997
, “
Chimie solaire dans de monde et en France
,”
Entropie
,
204
, pp.
47
55
.
2.
Trombe, F., 1948, “Perfectionment aux procedes permettant de traiter des substances par accumulation de l’energie apportee par un rayonnement,” Brevet d’invention, depose No. 1,010,525.
3.
Moissan, H., 1897, Le Four Electrique, G. Steinheil, editeur, Paris.
4.
Anon., 1976, “Colloques Internationaux du Centre National de La Recherche´ Scientifique (CNRS), LXXXV 23–26 Juin, 1958, Applications Thermiques de L’energie Solaire dans le Domaine de la Recherche´ et de L’industrie, Mont Louis,” Editions du CNRS, 15, quai Anatole-France–75700 Paris.
5.
Trombe, F., and Foex, M., 1958, “Quelques aspects de la Metallurgy au four solaire,” in Colloques Internationaux du Centre National de La Recherche´ Scientifique (CNRS), LXXXV 23–26 Juin, 1958, Applications Thermiques de L’energie Solaire dans de Domaine de la Recherche´ et de L’industrie, Mont Louis, Editions du CNRS, 15, quai Anatole-France–75700 Paris. Ref. 4, pp. 343–366.
6.
Trombe
,
F.
, and
Foex
,
M.
,
1951
, “
Essai de metallurgie du chrome par l’hydrogene au four solaire
,”
Rev. de Metal.
,
XLVIII
, pp.
359
362
.
7.
Royere
,
C.
, and
Trombe
,
F.
,
1968
, “
Etude au four solaire de la cinetique de la reduction par l’hydrogene du sesquioxyde de chrome pur ou dope
,”
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
267
, pp.
1275
1278
.
8.
Trombe, F., and Foex, M., 1954, “Les differents aspects du traitement de la zircone au four solaire,” Bull. Societe Francaise de ceramique, 25.
9.
Trombe
,
F.
, and
Foex
,
M.
,
1959
, “
Sur le corindon pur dondu au four solaire
,”
Bull. Societe Francaise de ceramic
,
43
, p.
69
69
.
10.
Ducarroir
,
M.
,
1968
, “
Reactions sur front chaud solaire. Application a la production de polycarbon
,”
Rev. Hautes Temp. Refract.
,
5
, pp.
89
96
.
11.
Trombe
,
F.
, and
Ducarroir
,
M.
,
1967
, “
Production de polycarbone au four solaire
,”
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
264
, pp.
843
846
.
12.
Trombe, F., and Foex, M., 1965, “Sur l’utilisation des techniques de chauffage pour la preparation d’oxydes purs,” Bull. Soc. Chim. Fr., p. 1070.
13.
Trombe
,
F.
,
Gion
,
Royere C.
, and
Robert
,
J.
, Juin 14,
1972
, “
Traitement d’oxydes refractaires au four solaire de 1000kW du CNRS
,”
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
272
, pp.
1104
1107
.
14.
Foex
,
M.
,
1951
, “
Attaques et traitement de divers mineraux au four solaire
,”
Rev. Metall.
,
XLVIII 5
, pp.
327
341
.
15.
Foex, M., 1962, “Dispositifs de traitment a haute temperature comportant l’emploi de chalumeaux a plasma associes ou non avec les fours solaires,” in Colloque sur les Chalumeaux et Fours a Plasma et Leurs Applications, Paris.
16.
Ferrierre, A., 2000 (private communication).
17.
Trombe, F., and Foex, M., 1956, “Quelques aspects du traitement thermique des refractaires des materiaux au four solaire,” (Some considerations on the thermal treatment of refractories (and) materials in a solar furnace), Metaux et corrosion XXXI, pp. 126–139.
18.
Trombe
,
F.
,
Foex
,
M.
, and
La Blanchetais
,
J.
,
1948
, “
Sur la fusion continue des substances au four solaire,” (On the continuous fusion of substances in a solar furnace)
,
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
226
, p.
83
83
.
19.
Trombe
,
F.
, and
Foex
,
M.
,
1957
, “
Sur une nouvelle methode d’attaque des refractaires en vue de leur analyze,” (On a new method of making refractories tractable for their analysis)
,
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
244
, p.
354
354
.
20.
Trombe, F., and Foex, M., 1957, “Traitement par de rayonnement solaire de substances refractaires placees sur plaques metalliques refrigerees,” (Treatment of films of refractory substances mounted on cooled metal surfaces with solar radiation), Bull. Soc. Chim. Fr., p. 534.
21.
Trombe
,
F.
,
1949
, “
Sur des conditions de traitement des substances au four solaire,” (On the conditions of exposure of substances in a solar furnace)
,
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
228
, p.
786
786
.
22.
Trombe
,
F.
,
Foex
,
M.
, and
La Blanchetais
,
J.
,
1949
, “
Sur la fusion de l’alumine au four solaire,” (On the fusion of alumina in a solar furnace)
,
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
228
, p.
1107
1107
.
23.
Trombe
,
F.
, and
Foex
,
M.
,
1951
, “
Essais siderurgiques au four solaire,” (Experiments on the metallurgy of iron and steel in a solar furnace)
,
Rev. de Metall.
,
XLVIII
, pp.
353
358
.
24.
Trombe
,
F.
, and
Foex
,
M.
,
1952
, “
Fours centrifuges a accumulation d’energie solaire,” (Centrifugal solar energy collecting furnace)
,
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
235
, p.
571
571
.
25.
Trombe, F., and Foex, M., 1954, “Utilisation de fours centrifuges pour de traitement par L’energie solaire de substances a haute temperature,” (The use of centrifugal furnaces), Bull. Soc. Chim. Fr., pp. 1315–1322.
26.
Trombe
,
F.
, and
Foex
,
M.
,
1955
, “
Sur un nouveau procede de traitement des metaux a l’aide de l’energie solaire,” (On a new procedure for treating metals with the help of solar energy)
,
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
240
, p.
196
196
.
27.
Trombe
,
F.
, and
Foex
,
M.
,
1950
, “
Reduction de la oxyde de chrome Cr2O3 par l’hydrogene au four solaire,” (Reduction of chromic oxide with hydrogen in a solar furnace)
,
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
230
, p.
2294
2294
.
28.
Ducarroir
,
M.
,
1973
, “
Types de reactions sur front chand et methodes d’approche thermodynamique des reactions de depot de phases condensees,” (Types of reactions on a (solar heated) hot surface and approaches to the thermodynamics of deposition from a vapor phase)
,
Rev. Hautes Temp. Refract.
,
10
, pp.
217
226
.
29.
Colin, F., and Collongues, R., “Utilisation d’une front chaud pour l’elaboration de depots d’oxydes a partir d’une phase vapeur,” (Using a hot irradiated surface for detailed study of oxide deposits near a vapor phase), Rev. Hautes Temp. Refract., pp. 227–229.
30.
Armas
,
B.
, and
Trombe
,
F.
,
1971
, “
Depots en phase vapeur sur front chaud solaire de borures de molybdene et de tungstene par decomposition thermique de melanges d’halogenures,” (Deposition from the vapor phase from on a solar heated hot surface by a thermal decomposition of mixtures of their halides)
,
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
272
, pp.
286
289
.
31.
Robert
,
J. F.
,
1971
, “
Les depots de tungstene metallique,” (Metallic tungsten deposits)
,
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
272
, pp.
251
254
.
32.
Royere
,
C.
,
1971
, “
Le reduction des oxydes par l’hydrogene a haute temperature. Applicaton au sesquioxyde de chrome,” (The reduction of oxides by hydrogen at high temperature—an applicaton to chromic oxide)
,
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
272
, pp.
241
249
.
33.
Male
,
G.
, and
Trombe
,
F.
,
1971
, “
La hierarchie thermochimique dans les carbures. Application a la reaction tantale-carbures de terres rares,” (The thermal hierarchy of the carbides. Applicaton to the tantalum-carbides of the rare earths)
,
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
272
, pp.
255
260
.
34.
Dhalenne
,
G.
,
Revcolevschi
,
A.
, and
Collongues
,
R.
,
1971
, “
Application de la zone verticale a la purification d’oxyde d’aluminum Al2O3,” (Application of zone melting to the purification to aluminum oxide, Al2O3),
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
272
, pp.
261
268
.
35.
Anon, 2000, “DOE Cancels Billion-Dollar Waste Contract,” Chem. Eng. News, p. 13.
36.
Anon., “Nuclear Sites May be Toxic in Perpetuity, Report Finds,” 2000, NY Times, Aug. 8.
37.
Anon., “Report Many Nuclear Sites will Never be Made Safe,” 2000, Los Angeles Times as quoted in The Minneapolis-Saint Paul Star-Tribune, Aug. 8.
38.
Fletcher
,
E. A.
,
2000
, “
Solar Energy and the Public Interest
,”
ASME J. Sol. Energy Eng.
,
122
, pp.
40
41
.
39.
Fletcher
,
E. A.
,
1984
, “
On the thermodynamics of solar energy use
,”
J. Minnesota Acad. Sci.
,
49
, pp.
30
34
.
40.
Fletcher
,
E. A.
, and
Moen
,
R. L.
,
1977
, “
Hydrogen and oxygen from water
,”
Science
,
197
, pp.
105
1056
.
41.
Abraham
,
B. M.
, and
Schreine
,
F.
,
1974
, “
General Principles Underlying Chemical Cycles Which Thermally Decompose Water into Elements
,”
Ind. Eng. Chem. Fundam.
,
13
, No.
4
, pp.
305
310
.
42.
Beghi
,
G. E.
,
1985
, “
Development of thermochemical and hybrid processes for hydrogen production
,”
Int. J. Hydrogen Energy
,
10
, No.
7/8
, pp.
432
438
.
43.
Ohta
,
T.
,
Funk
,
J. E.
,
Porter
,
J. D.
, and
Tilak
,
B. V.
,
1985
, “
Hydrogen production from water: Summary of recent research and development
,” Presented at the 5th WHEC (World Hydrogen Energy Conference),
Int. J. Hydrogen Energy
,
10
, No.
9
, pp.
571
576
.
44.
Chao
,
R. E.
,
1974
, “
Thermochemical Water Decomposition Processes
,”
Ind. Eng. Chem. Prod. Res. Dev.
,
13
, No.
2
, p.
94
101
.
45.
Funk
,
J. E.
, and
Reinstrom
,
R. M.
,
1968
, “
Energy requirements for the production of hydrogen from water
,”
I & E Chem. Proc. Res. Dev.
,
13
, pp.
336
342
.
46.
Ner
,
G.
,
Nicholas
,
J. D.
,
Bockris
,
O’M.
, and
McCann
,
J. F.
,
1976
, “
The photosynthetic production of hydrogen
,”
Int. J. Hydrogen Energy
,
1
, p.
45
45
.
47.
Ohta
,
T.
,
Askatura
,
S.
,
Yamagouchi
,
M.
, and
Kamiya
,
N.
,
1976
, “
Photochemical and thermoelectric utilization of solar energy in a hybrid water splitting system
,”
Int. J. Hydrogen Energy
,
1
, p.
113
113
.
48.
Ohta
,
T.
,
Kamiya
,
N.
,
Ohta
,
T.
,
Yamagouchi
,
M. N.
,
Otagaw
,
T.
, and
Askatura
,
A. S.
,
1978
, “
System efficiency of a water splitting system synthesized by photochemical and thermoelectric conversion of solar energy
,”
Int. J. Hydrogen Energy
,
3
, No.
2
, p.
203
208
.
49.
Dokiya
,
M.
, and
Kotera
,
Y.
,
1976
, “
Hybrid cycle with electrolysis using Cu-Cl system
,”
Int. J. Hydrogen Energy
,
1
, pp.
117
123
.
50.
Knoche
,
K. F.
, and
Funk
,
J. E.
,
1997
, “
Entropy, production, efficiency, and economics in the thermochemical generation of synthetic fuels II. The methanol water splitting cycle
,”
Int. J. Hydrogen Energy
,
2
, pp.
837
893
.
51.
Soliman
,
M. A.
,
Conger
,
W. L.
,
Carty
,
R. H.
,
Funk
,
J. E.
, and
Cox
,
K. E.
,
1976
, “
Hydrogen production via thermochemical cycles based on sulfur chemistry
,”
Int. J. Hydrogen Energy
,
2
, pp.
265
270
.
52.
Knoche
,
K. F.
,
Cremer
,
H.
,
Breyswisch
,
D.
,
Hegels
,
G.
,
Steinborn
,
G.
, and
Wuster
,
G.
,
1978
, “
Electrical and theoretical investigation of thermochemical hydrogen production
,”
Int. J. Hydrogen Energy
,
3
, pp.
209
216
.
53.
Knoche
,
K. F.
, and
Schuster
,
P.
,
1984
, “
Thermochemical production of hydrogen by a vanadium/chlorine cycle, part 1, an energy and exergy analysis of the process
,”
Int. J. Hydrogen Energy
,
9
, pp.
455
772
.
54.
Dokiya
,
M.
,
Kamayama
,
T.
, and
Fukida
,
K.
,
1979
, “
Thermochemical hydrogen preparation-Part V. A feasibility study of the sulfur iodine cycle
,”
Int. J. Hydrogen Energy
,
4
, pp.
267
277
.
55.
Bilgen
,
E.
, and
Bilgen
,
C.
,
1982
, “
Solar hydrogen production using two-step thermochemical cycles
,”
Int. J. Hydrogen Energy
,
7
, No.
8
, pp.
637
644
.
56.
Wenthorf
,
R. H.
, and
Hanneman
,
R. E.
,
1974
,
Science
,
185
, p.
311
311
.
57.
Pangborn, J. B., and Sharer, J. C., 1973, “Hydrogen from Water,” in Hydrogen Energy, T. N. Veziroglu, ed., Plenum, New York, pp. 449–475.
58.
Drell, I. L., and Belles, F. E., 1958, NACA Report 1383, Survey of Hydrogen Combustion Properties, National Advisory Committee for Aeronautics, Washington, D. C.
59.
Lapique
,
F.
,
Lede
,
J.
,
Villermaux
,
J.
,
Cales
,
B.
,
Baumard
,
J. F.
,
Anthony
,
A. M.
,
Abdul-Aziz
,
G.
,
Puechberty
,
D.
, and
Ledoux
,
M.
,
1983
, “
Recherches sur la production d’hydrogene par dissociation thermique directe de la vapeur d’eau
,”
Entropie
,
110
, pp.
42
53
.
60.
Diver
,
R. B.
,
Pederson
,
S.
,
Kappauf
,
T.
, and
Fletcher
,
E. A.
,
1983
, “
Hydrogen and oxygen from water-VI. Quenching the effluent from a solar furnace
,”
Energy (Oxford)
,
8
, pp.
947
955
.
61.
Villani, S., 1976, Isotope Separation, American Nuclear Society, Hinsdale, IL.
62.
Fletcher
,
E. A.
, and
Yu
,
R. C.
,
1979
, “
Considerations related to the effusional separation of equilibrium components of high-temperature water—The separation of helium-argon mixtures
,”
Energy (Oxford)
,
4
, pp.
373
381
.
63.
Cales
,
B.
, and
Baumard
,
J. F.
,
1984
, “
Mixed Conduction and Defect Structure of ZR02-CE02-Y203 Solid Solutions
,”
J. Electrochem. Soc.
,
131
, No.
10
, pp.
2407
2413
.
64.
Diver
,
R. B.
, and
Fletcher
,
E. A.
,
1977
, “
Thoria effusion membranes
,”
Am. Ceram. Soc. Bull.
,
56
, No.
11
, pp.
1019
1020
.
65.
Levy, S. I., The Rare Earths, 2nd ed., Butler and Tanner, Ltd., London, p. 290.
66.
Kogan
,
A.
,
2000
, “
Direct solar thermal splitting of water and on-site separation of the products—IV. Development of porous ceramic membranes for a solar thermal water-splitting reactor
,”
Int. J. Hydrogen Energy
,
25
, pp.
1043
1050
.
67.
Kogan
,
A.
,
Spiegler
,
E.
, and
Wolfshtein
,
M.
,
2000
, “
Direct solar thermal splitting of water and on-site separation of the products—III. Improvement of reactor efficiency by steam entrainment
,”
Int. J. Hydrogen Energy
,
25
, pp.
739
745
.
68.
Diver
,
R. B.
, and
Fletcher
,
E. A.
,
1979
, “
Hydrogen and oxygen from water. II. Some considerations in the reduction of the idea to practice
,”
Energy (Oxford)
,
4
, pp.
1139
1150
.
69.
Diver
,
R. B.
, and
Fletcher
,
E. A.
,
1980
, “
Hydrogen and oxygen from water. III. Evaluation of a hybrid process
,”
Energy (Oxford)
,
5
, pp.
597
607
.
70.
Nakamura
,
T.
,
1977
, “
Heat at High Temperatures
,”
Sol. Energy
,
19
, pp.
467
475
.
71.
Noring
,
J. N.
,
Diver
,
R. B.
, and
Fletcher
,
E. A.
,
1981
, “
Hydrogen and oxygen from water—V. The Roc system
,”
Energy (Oxford)
,
6
, pp.
109
121
.
72.
Scholl
,
K. L.
, and
Fletcher
,
E. A.
,
1993
, “
Y2O3-doped ZrO2 membranes for solar electrothermal and solarthermal separation—II. Electron hole conductivity of yttria-stabilized zirconia
,”
Energy (Oxford)
,
18
, pp.
69
74
.
73.
Fletcher
,
E. A.
,
1996
, “
Solar Thermochemical and Electrochemical Research—How They Can Help Reduce the Carbon Dioxide Burden
,”
Energy (Oxford)
,
21
, No.
7/8
, pp.
739
745
.
74.
Lede
,
J.
,
1999
, “
Solar thermochemical conversion of biomass
,”
Sol. Energy
,
65
, pp.
3
13
.
75.
Kugeler
,
K.
,
Kugeler
,
M.
,
Niessen
,
H. F.
, and
Hohn
,
H.
,
1975
, “
Considerations on High Temperature Reactors for Process Heat Applications
,”
Nucl. Eng. Des.
,
34
, pp.
15
32
.
76.
Harth
,
R. E.
, and
Boltendahl
,
U.
,
1981
, “
The Chemical Heat Pipe
,”
Interdisciplinary. Sci. Rev.
,
6
, pp.
221
228
.
77.
Carden
,
P.
,
1977
, “
Energy coradiation using the reversible ammonia reaction
,”
Sol. Energy
,
19
, pp.
365
378
.
78.
Lovegrove
,
K.
,
1993
, “
Thermodynamic limits on the performance of solar thermochemical energy storage system
,”
Int. J. Energy Res.
,
17
, pp.
817
829
.
79.
Lovegrove
,
K.
, and
Luzzi
,
A.
,
1996
, “
Endothermic reactors for an ammonia based thermochemical solar energy storage and transport system
,”
Sol. Energy
,
56
, pp.
361
371
.
80.
Fraenkel
,
D.
,
Levitan
,
R.
, and
Levy
,
M.
,
1986
, “
A solar thermochemical heat pipe based on the CO2-CH4 (1:1) system
,”
Int. J. Hydrogen Energy
,
11
, pp.
267
277
.
81.
Levy
,
M.
,
Levitan
,
R.
,
Rosin
,
H.
, and
Rubin
,
R.
,
1993
, “
Solar energy storage via a closed-loop chemical heat pipe
,”
Sol. Energy
,
50
, pp.
179
189
.
82.
Levitan
,
R.
,
Levy
,
M.
,
Rosin
,
H.
, and
Rubin
,
R.
,
1991
, “
Closed-loop operation of a solar chemical heat pipe at the Weizmann Institute solar furnace
,”
Sol. Energy Mater.
,
24
, pp.
464
477
.
83.
Levy
,
M.
,
Rubin
,
R.
,
Rosin
,
H.
, and
Levitan
,
R.
,
1992
, “
Methane reforming by direct solar irradiation of the catalyst
,”
Energy (Oxford)
,
17
, pp.
749
756
.
84.
Diver
,
R. B.
,
Fish
,
J. D.
,
Levitan
,
R.
,
Levy
,
M.
,
Rosin
,
H.
, and
Richardson
,
T. J.
,
1992
,
Sol. Energy
,
48
, p.
21
21
.
85.
Edwards
,
J. H.
,
Do
,
K. T.
,
Maitra
,
A. M.
,
Schuck
,
S.
,
Fok
,
W.
, and
Stein
,
W.
,
1996
, “
The use of solar-based CO2/CH4 reforming for reducing greenhouse gas emissions during the generation of electricity and process heat
,”
Energy Convers. Manage.
,
37
, pp.
1339
1344
.
86.
Edwards
,
J.
,
1995
, “
Potential sources of CO2 and the options for its large-scale utilization now and in the future
,”
Catal. Today
,
3
, pp.
59
66
.
87.
Anikeev
,
V. I.
,
Bobrin
,
A. S.
,
Ortner
,
J.
,
Schmidt
,
S.
,
Funken
,
K. H.
, and
Kuzin
,
N. A.
,
1998
, “
Catalytic reactor/receiver for solar reforming of natural gas; design and performance
,”
Sol. Energy
,
63
, pp.
97
104
.
88.
Edwards
,
J.
, and
Maitra
,
A.
,
1995
, “
The chemistry of methane reforming with carbon dioxide and its current and potential applications
,”
Fuel Process. Technol.
,
4
, pp.
69
89
.
89.
Edwards
,
J.
,
1995
, “
Potential sources of CO2 and the options for its large-scale utilization now and in the future
,”
Catal. Today
,
43
, pp.
59
66
.
90.
Worner
,
A.
, and
Tamme
,
R.
,
1998
, “
CO2 reforming of methane in a solar driven volumetric receiver reactor
,”
Catal. Today
,
46
, pp.
165
175
.
91.
Murray
,
J. P.
, and
Fletcher
,
E. A.
,
1994
, “
Reaction of steam with cellulose in a fluidized bed using concentrated sunlight
,”
Energy (Oxford)
,
19
, pp.
1083
1098
.
92.
Boutin
,
O.
,
Ferrar
,
M.
, and
Lede
,
J.
,
1998
, “
Radiant flash pylysis of cellulose: Evidence for the formation of short lifetime intermediate liquid species
,”
J. Anal. Appl. Pyrolysis
,
47
, pp.
13
31
.
93.
Aoki
,
A.
,
Ohtake
,
H.
,
Shimizu
,
T.
,
Kitayama
,
Y.
, and
Kodama
,
T.
,
2000
, “
Reactive metal-oxide redox system for a two-step thermochemical conversion of coal and water to CO and H2,
Energy (Oxford)
,
25
, pp.
201
218
.
94.
Steinfeld
,
A.
,
Larson
,
C.
,
Palumbo
,
R.
, and
Foley
,
M.
,
1996
, “
Thermodynamic analysis of the coproduction of zinc and synthesis gas using solar process heat
,”
Energy (Oxford)
,
21
, pp.
205
222
.
95.
Steinfeld
,
A.
,
Brack
,
M.
,
Meier
,
A.
,
Weidenkaff
,
A.
, and
Wuillemin
,
D.
,
1998
, “
A solar chemical reactor for the co-production of zinc and synthesis gas
,”
Energy (Oxford)
,
10
, pp.
803
814
.
96.
Matsunami
,
J.
,
Yoshida
,
S.
,
Yokota
,
O.
,
Nezuka
,
M.
,
Tsuji
,
M.
, and
Tamaura
,
Y.
,
1999
, “
Gasification of waste tire and plastic (PET) by solar thermochemical process for solar energy utilization
,”
Sol. Energy
,
65
, pp.
21
23
.
97.
Matsunami
,
J.
,
Yoshida
,
S.
,
Yoshinori
,
O.
,
Yokota
,
O.
,
Tamaura
,
Y.
, and
Kitamura
,
M.
,
2000
, “
Coal gasification by CO2 gas bubbling in molten salt for solar/fossil energy hybridization
,”
Sol. Energy
,
68
, pp.
257
261
.
98.
Lede
,
J.
,
Villermaux
,
J.
,
Royere
,
C.
,
Blouri
,
B.
, and
Flamant
,
G.
,
1983
, “
Utilisation de L’energie solar concentree pour la Pyrolyse du bois et des huiles lourdes du petrole
,”
Entropie
,
110
, p.
57
57
.
99.
Dror
,
Y.
,
Marian
,
S.
, and
Levy
,
M.
,
1985
, “
Pyrolysis of oil shales and coal
,”
Fuel
,
64
, pp.
406
410
.
100.
Berber
,
R.
, and
Fletcher
,
E. A.
,
1988
, “
Extracting oil from shale using solar energy
,”
Energy (Oxford)
,
13
, pp.
13
23
.
101.
Ingel
,
G.
,
Levy
,
M.
, and
Gordon
,
J. M.
,
1991
, “
Gasification of oil shales by solar energy
,”
Sol. Energy Mater.
,
24
, pp.
478
489
.
102.
Diver
,
R. B.
, and
Fletcher
,
E. A.
,
1985
, “
Hydrogen and sulfur from H2S-III. The economics of a quench process
,”
Energy (Oxford)
,
10
, pp.
831
842
.
103.
Anon, 1976, Manual on Disposal of Refinery Wastes, Chap. 8. Sulfur-Sulfur Compounds, Am. Pet. Inst., p. 931.
104.
Noring
,
J.
, and
Fletcher
,
E. A.
,
1982
, “
High temperature solar thermochemical processing—Hydrogen and sulfur from hydrogen sulfide
,”
Energy (Oxford)
,
7
, pp.
651
666
.
105.
Kappauf
,
T.
,
Murray
,
J. P.
,
Palumbo
,
R.
,
Diver
,
R. B.
, and
Fletcher
,
E. A.
,
1985
, “
Hydrogen and sulfur from H2S-IV. Quenching the effluent from a solar furnace
,”
Energy (Oxford)
,
10
, pp.
1119
1137
.
106.
Davenport, R. E., and Kamatari, O., 1979, Chemical Economics Handbook, Stanford Res. Inst., Palo Alto, p. 780.001A.
107.
Raymont
,
M. E. D.
,
1975
, “
Make Hydrogen from Hydrogen-Sulfide
,”
Hydrocarbon Process.
,
54
, No.
7
, pp.
139
142
.
108.
Fukuda
,
K.
,
Dokiya
,
M.
,
Kameyama
,
T.
, and
Kotera
,
Y.
,
1978
, “
Catalytic Decomposition of Hydrogen Sulfide
,”
Ind. Eng. Chem. Fundam.
,
17
, No.
4
, p.
243
243
.
109.
Dokiya
,
M.
,
Kameyama
,
T.
, and
Fukuda
,
K.
,
1977
, “
Study of Thermochemical Hydrogen Preparation Application of Effusion on Thermochemically Limited Reaction
,”
Denki Kagaku Oyobi Kogyo Butsuri Kagaku
,
45
, No.
11
, p.
701
701
.
110.
Kameyama
,
T.
,
Dokiya
,
M.
,
Fujishigi
,
M.
,
Yokokawa
,
H.
, and
Fukuda
,
K.
,
1983
, “
Production of Hydrogen from Hydrogen-Sulfide by Means of Selective Diffusion Membranes
,”
Int. J. Hydrogen Energy
,
8
, pp.
5
13
.
111.
Fletcher
,
E. A.
,
Noring
,
J. E.
, and
Murray
,
J. P.
,
1984
, “
Hydrogen sulfide as a source of hydrogen
,”
Int. J. Hydrogen Energy
,
9
, pp.
587
593
.
112.
Kappauf
,
K.
, and
Fletcher
,
E. A.
,
1985
, “
Hydrogen and sulfur from hydrogen sulfide—VI. Quenching the effluent from a solar furnace
,”
Energy (Oxford)
,
10
, pp.
1119
1137
.
113.
Zaman
,
J.
, and
Chakma
,
A.
,
1995
, “
Production of hydrogen and sulfur from hydrogen sulfide
,”
Fuel Process. Technol.
,
41
, pp.
159
198
.
114.
Harvey
,
W. S.
,
Davidson
,
J. S.
, and
Fletcher
,
E. A.
,
1998
, “
Thermolysis of hydrogen sulfide in the temperature range 1350–1600 K
,”
Ind. Eng. Chem. Res.
,
37
, pp.
2323
2332
.
115.
Anon., 1983, Aluminum Industry: Energy Aspects of Structural Change, Organization for Economic Cooperation and Development, Paris (In the U.S.: OECD Publications and Information Center, Washington, D.C., pp. 40–44).
116.
Steinfeld
,
A.
, and
Fletcher
,
E. A.
,
1991
, “
Theoretical and experimental investigation of the carbothermic reduction of Fe2O3 using solar energy
,”
Energy (Oxford)
,
16
, pp.
1011
1019
.
117.
1985, Encyclopedia of Chemical Technology, 3rd Ed., 24, Wiley, New York, pp. 807–854.
118.
Robert Palumbo, private communication.
119.
Salas-Morales
,
J. C.
, and
Evans
,
J. W.
,
1994
, “
Further studies of a zinc-air cell employing a packed bed anode. Part III: Improvements in cell design
,”
J. Appl. Electrochem.
,
24
, pp.
858
862
.
120.
Steinfeld
,
A.
,
Kuhn
,
P.
,
Reller
,
A.
,
Palumbo
,
R
,
Murray
,
J.
, and
Tamaura
,
Y.
,
1998
, “
Solar processed metals as clean energy carriers and water splitters
,”
Int. J. Hydrogen Energy
,
23
, pp.
767
774
.
121.
Berman
,
A.
, and
Epstein
,
M.
,
2000
, “
The kinetics of hydrogen production in the oxidation of liquid zinc with water vapor
,”
Int. J. Hydrogen Energy
,
25
, pp.
957
967
.
122.
Fletcher
,
E. A.
,
MacDonald
,
F. J.
, and
Kunnerth
,
D.
,
1985
, “
High temperature solar electrothermal processing—II. Zinc from zinc oxide
,”
Energy (Oxford)
,
10
, pp.
1255
1272
.
123.
Steinfeld
,
A.
,
Frei
,
A.
,
Kuhn
,
P.
, and
Wuillemin
,
D.
,
1995
, “
Solarthermal production of zinc and syngas via combined ZnO-reduction and CH4-reforming processes
,”
Int. J. Hydrogen Energy
,
20
, pp.
793
804
.
124.
Steinfeld
,
A.
,
Larson
,
C.
,
Palumbo
,
R.
, and
Foley
,
M.
,
1996
, “
Thermodynamic analysis of the co-production of zinc and synthesis gas using solar process heat
,”
Energy (Oxford)
,
21
, pp.
205
222
.
125.
Haueter
,
P.
,
Moeller
,
S.
,
Palumbo
,
R.
, and
Steinfeld
,
A.
,
1999
, “
The production of zinc by thermal dissociation of zinc oxide—solar chemical reactor design
,”
Sol. Energy
,
67
, pp.
161
167
.
126.
Weidenkaff
,
A.
,
Reller
,
A.
,
Sibieude
,
F.
,
Wokoun
,
A.
, and
Steinfeld
,
A.
,
2000
, “
Experimental investigations on the crystallization of zinc by direct irradiation of zinc oxide in a solar furnace
,”
Chem. Mater.
,
12
, pp.
2175
2181
.
127.
Fletcher
,
E. A.
, and
Noring
,
J. E.
,
1983
, “
High temperature solar electrothermal processing—Zinc from zinc oxide
,”
Energy (Oxford)
,
8
, pp.
247
254
.
128.
Palumbo
,
R. D.
, and
Fletcher
,
E. A.
,
1988
, “
High temperature solar electrothermal processing—III. Zinc from zinc oxide at 1200–1600 K using a non-consumable anode
,”
Energy (Oxford)
,
13
, pp.
319
332
.
129.
Fletcher
,
E. A.
,
1999
, “
Solarthermal and solar quasi-electrolytic processing and separations: Zinc from zinc oxide as an example
,”
Ind. Eng. Chem. Res.
,
38
, pp.
2275
2282
.
130.
Parks
,
D. J.
,
Scholl
,
K. L.
, and
Fletcher
,
E. A.
,
1988
, “
A study of the use of Y2O3 doped ZrO2 membranes for solar electrothermal and solarthermal separations
,”
Energy (Oxford)
,
13
, pp.
121
136
.
131.
Anthrop
,
D. F.
, and
Searcy
,
A. W.
,
1964
, “
Sublimation and thermodynamic properties of zinc oxide
,”
J. Phys. Chem.
,
68
, pp.
2335
2342
.
132.
Watson
,
L. R.
,
Dressler
,
T. L.
,
Salter
,
R. H.
, and
Murad
,
E.
,
1993
, “
High temperature mass spectrometric studies of the bond energies of gas phase ZnO, NiO, and CuO
,”
J. Phys. Chem.
,
97
, pp.
5577
5580
.
133.
Bilgen
,
E.
,
Ducarroir
,
M.
,
Foex
,
M.
,
Sibieude
,
F.
, and
Trombe
,
F.
,
1977
, “
Use of solar energy for direct and two-step water decomposition cycles
,”
Int. J. Hydrogen Energy
,
2
, pp.
251
257
.
134.
Palumbo
,
R.
,
Lede
,
J.
,
Boutin
,
O.
,
Ricart
,
E. E.
,
Steinfeld
,
A.
,
Moller
,
S.
,
Weidenkaff
,
A.
,
Fletcher
,
E. A.
, and
Beilicke
,
J.
,
1998
, “
The production of Zn from ZnO in a high-temperature solar decomposition quench process—I. The scientific framework for the process
,”
Chem. Eng. Sci.
,
53
, pp.
2503
2517
.
135.
Weidenkaff
,
A.
,
Steinfeld
,
A.
,
Wokaun
,
A.
,
Eicher
,
B.
, and
Reller
,
A.
,
1999
, “
The direct solar thermal dissociation of ZnO: Condensation and crystallization of zinc in the presence of oxygen
,”
Sol. Energy
,
65
, pp.
59
69
.
136.
Bessieres
,
J.
,
Bessieres
,
A.
, and
Heizmann
,
J. J.
,
1980
, “
Iron oxide reduction kinetics by hdyrogen
,”
Int. J. Hydrogen Energy
,
5
, pp.
585
598
.
137.
Steinfeld
,
A.
,
Kuhn
,
P.
, and
Karni
,
J.
,
1993
, “
High temperature solar thermochemistry: Production of iron and synthesis gas by Fe3O4 reduction with ethane
,”
Energy (Oxford)
,
18
, pp.
239
249
.
138.
Steinfeld
,
A.
,
Frei
,
A.
, and
Kuhn
,
P.
,
1995
, “
Thermoanalysis of the combined Fe3O4 and CH4 reforming processes
,”
Mater. Trans., JIM
,
26B
, pp.
509
515
.
139.
Tamaura
,
Y.
,
Wada
,
Y.
,
Yoshida
,
T.
,
Ehrensberger
,
K.
, and
Steinfeld
,
A.
,
1997
, “
The coal/Fe3O4 system for mixing of solar and fossil energies
,”
Energy (Oxford)
,
22
, pp.
338
342
.
140.
Sibieude
,
F.
,
Ducarroir
,
M.
,
Tofighi
,
A.
, and
Ambriz
,
J.
,
1982
, “
High temperature experiments with a solar furnace: the decomposition of Fe34, Mn3O4, CdO
,”
Int. J. Hydrogen Energy
,
7
, pp.
79
88
.
141.
Tofighi
,
A.
, and
Sibieude
,
F.
,
1984
, “
Dissociation of magnerite in a solar furnace for hydrogen production. Tentative production evaluation of a 1000 kW concentrator from small scale (2 kW) experimental results
,”
Int. J. Hydrogen Energy
,
9
, pp.
293
296
.
142.
Steinfeld
,
A.
,
Sanders
,
S.
, and
Palumbo
,
R.
,
1998
, “
Design aspects of solar thermochemical engineering—A case study; two step water splitting cycle using the Fe3O4 redox system
,”
Sol. Energy
,
65
, pp.
43
53
.
143.
Murray
,
J. P.
,
Steinfeld
,
A.
, and
Fletcher
,
E. A.
,
1995
, “
Metals, Nitrides, and Carbides Via Solar Carbothermal Reduction of Metal Oxides
,”
Energy (Oxford)
,
20
, pp.
695
704
.
144.
Palumbo
,
R.
,
Campbell
,
M. B.
, and
Grafe
,
T. H.
,
1992
, “
High temperature solarthermal processing ZnS(s) and CO from ZnO(s) and C(gr) using Ti2O3s and TiO2s,
Energy (Oxford)
,
17
, pp.
179
190
.
145.
Millar
,
J.
,
Palumbo
,
R.
,
Rouanet
,
A.
, and
Pichelin
,
G.
,
1997
, “
The production of Zn from ZnO in a two-step solar process utilizing FeO and Fe3O4,
Energy (Oxford)
,
22
, pp.
301
309
.
146.
Yakimow
,
S. E.
,
Krause
,
P. E.
,
Hahn
,
G. W.
, and
Palumbo
,
R.
,
1994
, “
Initial kinetic study with a chemical equilibrium analysis of the ZnOs+Ti2O3s reaction
,”
I&EC Res.
,
33
, pp.
436
439
.
147.
Palumbo
,
R. D.
, and
Larson
,
C. L.
,
1990
, “
Production of C from CO2 in a two-step solar process utilizing FeO and Fe3O4,
Energy (Oxford)
,
15
, pp.
479
487
.
148.
Armas
,
B.
, and
Trombe
,
F.
,
1973
, “
Chemical vapor deposition of molybdenum and tungsten borides by thermal decomposition of gaseous mixtures of halides on a solar ‘front chaud,’
Sol. Energy
,
15
, pp.
67
73
.
149.
Cruz Fernandes
,
J.
,
Guerra Rosa
,
L.
,
Martinez
,
D.
,
Rodriguez
,
J.
, and
Shohoji
,
N.
,
1998
, “
Influence of gas environment on synthesis of silicon carbide through reaction between silicon and amorphous carbon in a solar furnace at Platforma solar de Almeria
,”
J. Ceram. Soc. Jpn.
,
106
, pp.
839
841
.
150.
Shohoji
,
N.
,
Guerra Rosa
,
L.
,
Cruz Fernandes
,
J.
,
Martinez
,
D.
, and
Rodriguez
,
J.
,
1999
, “
Catalytic acceleration of graphitization of amorphous carbon during synthesis of tungsten carbide from tungsten and excess amorphous carbon in a solar furnace
,”
Mater. Chem. Phys.
,
58
, pp.
172
176
.
151.
Guerra Rosa
,
L.
,
Cruz Fernandes
,
J.
,
Amaral
,
P. M.
,
Martinez
,
D.
, and
Shohoji
,
N.
,
1999
, “
Photochemically promoted formation of higher carbide of molybdenum through reaction between metallic molybdenum powders and graphite powders in a solar furnace
,”
Int. J. Refract. Met. Hard Mater.
,
17
, pp.
351
356
.
152.
Shohoji
,
N.
,
Amaral
,
P. M.
,
Cruz Fernandes
,
J.
,
Guerra Rosa
,
L.
,
Martinez
,
D.
, and
Rodriguez
J.
,
2000
, “
Catalytic graphitization of amorphous carbon during solar carbide synthesis of Via group metals (Cr, Mo, and W)
,”
Mater. Trans., JIM
,
41
, pp.
246
249
.
153.
Cruz Fernandes
,
J.
,
Amaral
,
P. M.
,
Guerra Rosa
,
L.
,
Martinez
,
D.
,
Rodriguez
,
J.
, and
Shohoji
,
N.
,
2000
, “
X-ray diffraction characterization of carbide and carbonitride if Ti and Zr prepared through reaction between metal powders and carbon powders in a solar furnace
,”
Int. J. Refract. Met. Hard Mater.
,
17
, pp.
437
443
.
154.
Pohlmann
,
B.
,
Funken
,
K. H.
, and
Dominik
,
R.
,
1999
, “
A solar heated rotary kiln for detoxification of hazardous wastes
,”
J. Phys. IV
,
9
, pp.
307
312
.
155.
Funken
,
K. H.
,
Pohlmann
,
B.
,
Eckhard
,
L.
, and
Dominik
,
R.
,
1999
, “
Application of concentrated solar radiation to high temperature detoxification and recycling process of hazardous wastes
,”
Sol. Energy
,
65
, pp.
25
31
.
156.
Schaffner
,
B.
,
Hoffelner
,
W.
, and
Steinfeld
,
A.
,
2000
, “
Recycling of hazardous solid waste material using high temperature solar process heat—I, Thermodynamic analysis
,”
Environ. Sci. Technol.
,
34
, pp.
4177
4184
.
157.
Malato
,
S.
,
Gimenez
,
J.
,
Richter
,
C.
,
Curco
,
D.
, and
Blanco
,
J.
,
1997
, “
Low concentrating CPC collectors for photocatalytic water detoxification. Comparison with a medium concentrating solar collector
,”
Wat. Sci. Techn.
,
35
, pp.
157
164
.
158.
Minero
,
C.
,
Pelizzetti
,
E.
,
Malato
,
S.
, and
Blanco
,
J.
,
1993
, “
Large solar plant photocatalytic water decontamination: Degradation of pentachloropenol
,”
Chemosphere
,
26
, pp.
2103
2119
.
159.
Minero
,
C.
,
Pelizzetti
,
E.
,
Malato
,
S.
, and
Blanco
,
J.
,
1996
, “
Large solar plant photocatalytic water decontamination: Effect of operational parameters
,”
Sol. Energy
,
56
, pp.
421
428
.
160.
Dillert
,
R.
,
Cassano
,
A. E.
,
Goslich
,
R.
, and
Bahnemann
,
D.
,
1999
, “
Large scale studies in solar catalytic wastewater treatment
,”
Catal. Today
,
54
, pp.
267
282
.
161.
Gime´nez
,
J.
,
Curco´
,
D.
, and
Queral
,
M. A.
,
1999
, “
Photocatalytic treatment of phenol and 2,4-dichlorophenol in a solar plant in the way to scaling-up
,”
Catal. Today
,
54
, pp.
229
244
.
162.
Malato
,
S.
,
Blanco
,
J.
,
Richter
,
C.
,
Braun
,
B.
, and
Maldonado
,
M. I.
,
1998
, “
Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic species
,”
Appl. Catal., B
,
17
, pp.
347
356
.
163.
Herrmann
,
J. M.
,
Matos
,
J.
,
Disdier
,
J.
,
Guillard
,
C.
,
Laine
,
J.
,
Malato
,
S.
, and
Blanco
,
J.
,
1999
, “
Photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension
,”
Catal. Today
,
54
, No.
2–3
, pp.
217
228
.
164.
Chibante
,
L. P. F.
,
Thess
,
A.
,
Alford
,
J. M.
,
Diener
,
M. D.
, and
Smalley
,
R. E.
,
1993
, “
Solar Generation of the Fullerenes
,”
J. Phys. Chem.
,
97
, pp.
8696
8700
.
165.
Fields
,
C. L.
,
Pitts
,
J. R.
,
Hale
,
M. J.
,
Bingham
,
C.
,
Lewandowski
,
A.
, and
King
,
D. E.
,
1993
, “
Formation of Fullerenes in Highly Concentrated Solar Flux
,”
J. Phys. Chem.
,
97
, pp.
8701
8702
.
166.
Laplaze
,
D.
,
Bernier
,
P.
,
Barbenette
,
L.
,
Lambert
,
J. M.
,
Flamant
,
G.
,
Lebrun
,
M.
,
Brunelle
,
A.
, and
Della-Negra
,
S.
,
1994
, “
Production of Fullerenes from Solar Energy—The Odeillo Experiment
,”
C. R. Acad. Sci., Ser. IIa: Sci. Terre Planetes
,
318
II, pp.
733
738
.
167.
Laplaze
,
D.
,
Bernier
,
P.
,
Flamant
,
G.
,
Lebrun
,
M.
,
Brunelle
,
A.
, and
Della-Negra
,
S.
,
1996
, “
Solar Energy—Application of the Production of Fullerenes
,”
J. Phys. B
,
29
, pp.
4943
4954
.
168.
Steinfeld
,
A.
,
Kirillov
,
V.
,
Kuvshinov
,
G.
,
Mogilnykh
,
Y.
, and
Reller
,
A.
,
1997
, “
Production of filamentous carbon and hydrogen by solarthermal catalytic cracking of methane
,”
Chem. Eng. Sci.
,
52
, pp.
3599
3603
.
169.
Meier
,
A.
,
Kirillov
,
V.
,
Kuvshinov
,
G.
,
Mogilnykh
,
Y.
,
Weidenkaff
,
A.
, and
Steinfeld
,
A.
,
1999
, “
Production of filamentous carbon by solarthermal decomposition of hydrocarbons
,”
J. Phys. IV
,
9
, pp.
393
398
.
You do not currently have access to this content.