The absorbing matrix of a volumetric (directly irradiated) solar receiver must be exposed to the concentrated incoming sunlight. Most applications require that the receiver operates at an elevated pressure and in many cases the working fluid is not air. These requirements can be met only if the receiver is equipped with a transparent window. A novel frustum-like high-pressure (FLHiP) window, made of fused silica, is presented. Optical, mechanical, and thermal analyses, over 1,000 hours of accelerated life-time tests and several hundred hours of tests in a solar receiver, show that this window satisfies the required criteria for operation in a volumetric solar receiver, whose operating pressure and peak absorber temperature reach 30 bar and 1700°C, respectively.

1.
Abele, M., Bauer, H., Buck, R., Tamme, R., and Wo¨rner, A., 1996, “Design and Test Results of a Receiver-Reactor for Solar Methane Reforming,” Proc. ASME Solar Engineering 1996, ASME, New York, pp. 339–346.
2.
Anikeev, V. I., Bobrin, A. S., and Kirillov, V. A., 1992, “New Conception of Catalytic Volumetric Reactor-Receiver,” Proc. 6 International Symp. Solar Thermal Concentrating Technologies, Vol. 1, pp. 387–394.
3.
Becker, M., Gupta, B., Meinecke, W., and Bohn, M., 1995, Solar Energy Concentrating Systems—Applications and Technologies, C. F. Mu¨ller Verlag, Heidelberg, Germany.
4.
Buck, R., 1990, “Test and Calculations for a Volumetric Ceramic Receiver,” Solar Thermal Technology—Research Development and Applications, Proc. 4 International Symp., B. P. Gupta, and W. H. Traugott, eds. Hemisphere, New York, pp. 279–286.
5.
Buck, R., Heller, P., and Koch, H., 1996, “Receiver Development for a Dish-Brayton System,” Proc. ASME Solar Engineering 1996, ASME, New York, pp. 91–96.
6.
De Laquil, P., Kearney, D., Geyer, M., and Diver, R., 1992, “Solar-Thermal Electric Technology,” Renewable Energy, Sources for Fuel and Electricity, Island Press, Washington, D.C., Chapter 5.
7.
Evans
A. G.
, and
Faber
K. T.
,
1984
, “
Crack Growth Resistance of Microcracking Brittle Materials
,”
J. Amer. Ceram. Soc.
, Vol.
67
, p.
255
255
.
8.
Flamant
G.
, and
Olalde
G.
,
1983
, “
High Temperature Solar Gas Heating Comparison Between Packed and Fluidized Bed Receivers—I
,”
Solar Energy
, Vol.
31
, No.
5
, pp.
463
471
.
9.
Gordon, J. E., 1976, The New Science of Strong Materials. Penguin, Harmondsworth, UK.
10.
Griffith
A. A.
,
1920
, “
The Phenomena of Rupture and Flow in Solids
,”
Phil. Trans. Roy. Soc. Lond.
, Vol.
A221
, p.
163
163
.
11.
Griffith, A. A., 1924, “The Theory of Rupture,” Proc. First Internat Congr. Appl. Meek., (C. B. Biezeno and J. M. Burgers, eds., J. Waltman Jr., Delft, p. 55.
12.
Heller
P.
,
1991
, “
Optimization of Windows for Closed Receivers and Receiver-Reactors: Enhancement of Optical Performance
,”
Solar Energy Materials
, Vol.
24
, pp.
720
724
.
13.
Hockey
B. J.
,
1983
, “
Crack Healing in Brittle Materials
,”
Fracture Mechanics of Ceramics
, R. C. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. Lange, eds., Vol.
6
, Plenum, New York, p.
637
637
.
14.
Hunt, A. J., 1979, “A New Solar Receiver Utilizing a Small Particle Heat exchanger,” Proceeding of the 14th International Society of Energy Conversion Engineering Conference, Vol. 1, No. 14, pp. 159–163.
15.
Inglis
G. E.
,
1913
, “
Stresses in a Plate Due to the Presence of Cracks and Sharp Corners
,”
Trans. Inst Naval Archit.
, Vol.
55
, p.
219
219
.
16.
Lawn, B., 1993, Fracture of Brittle Solids, Cambridge University Press, New York.
17.
Karni, J., Rubin, R., Kribus, A., Doron, P., and Sagie, D., 1996, “Test Results with the Directly Irradiated Annular Pressurized Receiver,” Proc. 8 International Symp. Solar Thermal Concentrating Technologies, Ko¨ln, Germany, Oct., Vol. 2, pp. 607–619.
18.
Karni
J.
,
Kribus
A.
,
Rubin
R.
,
Doron
P.
,
Fiterman
A.
, and
Sagie
D.
,
1997
,“
The DIAPR: A High-Pressure High-Temperature Solar Receiver
,”
ASME Journal of Solar Energy Engineering
, Vol.
119
, pp.
74
78
.
19.
Karni, J., Kribus, A., Rubin, R., and Doron, P., 1998, “The Porcupine: A Novel High-Flux Absorber For Volumetric Solar Receivers,” ASME JOURNAL OF SOLAR ENERGY ENGINEERING, Vol. 120.
20.
Kribus
A.
,
1994
, “
Optical Performance of Conical Windows for Concentrated Solar Radiation
,”
ASME Journal of Solar Energy Engineering
, Vol.
116
, pp.
47
52
.
21.
Kribus, A., Fiterman, A., Doron, P. Karni, J., and Agranat, V., 1994, “Energy Transport in a DIAPR-Type Receiver,” Proc. 7 International Symp. Solar Thermal Concentrating Technologies, Vol. 4, Moscow, Russia, Sept., pp. 864–872.
22.
Kribus, A., Zaibel, R., Carey, D., Segal, A., and Karni, J., 1997, “A Solar-Driven Combined Cycle Power Plant,” Solar Energy, accepted for publication.
23.
Ostraich B., Kochavi E., Taragan E., Anteby I., and Mimon Y., 1996, “Solar Receiver’s Quartz Window—Thermomechanical Analysis,” 26 Israel Conf. Mechanical Engineering, Haifa, Israel, May.
24.
Posnansky
M.
, and
Pylkka¨nen
T.
,
1991
, “
Development and Testing of a Volumetric Gas Receiver for High-Temperature Application
,”
Solar Energy Materials
, Vol.
24
, pp.
204
209
.
25.
Posnansky, M., and Pylkka¨nen, T., 1992, “High Temperature Volumetric Gas Receiver—Results of the Development and Testing of the Atlantis Ceramic Receiver,” Proc. 6 International Symp. Solar Thermal Concentrating Technologies, Vol. 1, pp. 291–298.
26.
Pritzkow
W. E. C.
,
1991
, “
Pressure Loaded Volumetric Ceramic Receiver
,”
Solar Energy Materials
, Vol.
24
, pp.
498
507
.
27.
Stavrinidis
B.
, and
Holloway
D. G.
,
1983
, “
Crack Healing in Glass
,”
Phys. and Chem. Glasses
, Vol.
24
, p.
19
19
.
28.
Stevens, K. K., 1987, Statics and Strength of Materials, Prentice-Hall, Englewood Cliffs, NJ.
29.
Tipper, C. F. E., 1962, The Brittle Fracture Story, Cambridge University Press, New York.
30.
Winter, C.-J., Sizmann, R. L., and Vant-Hull, L. L., 1991, Solar Power Plants, Springer-Verlag, Berlin.
This content is only available via PDF.
You do not currently have access to this content.