Abstract

U.S. Gulf Coast refineries account for over half of the total refining capacity of the nation. However, less than a third of products refined in this region are used to supply local markets. Due to the highly centralized nature of the U.S. petroleum distribution network, disruptions affecting Gulf Coast refineries can have widespread impacts. The objective of this study is to develop a sufficient predictive model for the likelihood and expected duration of refinery shutdowns under hurricane hazards. Such models are currently lacking in the literature yet essential for risk modeling of the cascading consequences of refinery shutdown ranging from resilience analyses of petroleum networks to potential health effects on surrounding communities tied to startup and shutdown activities. A database of empirical refinery downtime and storm hazards data is developed, and statistical analyses are conducted to explore the relationship between refinery and storm characteristics and shutdown duration. The proposed method with the highest predictive accuracy is found to be a model comprised of a logistic regression binary classification component related to refinery shutdown potential and a Poisson distribution generalized linear model component related to downtime duration determination. To illustrate the utility of the newly developed model, a case study is conducted exploring the impact of two storms affecting the Houston Ship Channel and surrounding region. Both the regional refining resilience as well as the distribution network resilience are quantified, including uncertainty propagation. Such analyses reveal local community to nationwide impacts of refining disruptions and can support resilience enhancement decisions.

References

1.
Mouawad
,
J.
,
2005
, “
Storm Stretches Refiners Past a Perilous Point
,” New York Times, accessed June 8, 2023, https://www.nytimes.com/2005/09/11/business/storm-stretches-refiners-past-a-perilous-point.html
2.
Arnold
,
B.
,
2017
, “
Hurricane Harvey Puts Squeeze on Oil Supply Chain
,” Hill, accessed June 8, 2023, https://thehill.com/blogs/pundits-blog/energy-environment/349060-hurricane-harvey-puts-squeeze-on-oil-supply-chain/
3.
Van Cleave
,
K.
,
2017
, “
We Need That Gulf Coast. Harvey Flooding Shuts Down Oil Refineries
,” CBS News, accessed: Feb. 7, 2023, https://www.cbsnews.com/news/hurricane-harvey-gas-prices-increase-oil-refineries-flooded/.
4.
Raman
,
R.
, and
Medonos
,
S.
,
2022
, “
Practical Experience From Risks of Decommissioning of Petrochemical Facilities
,”
ASCE-ASME J. Risk Uncert. Eng. Sys. Part B Mech. Eng.
,
8
(
4
), p.
044701
.10.1115/1.4055797
5.
Cunningham
,
N.
,
2017
, “
Hurricane Harvey Has Created a Looming Gas Shortage
,” Business Insider, accessed June 8, 2023, https://www.businessinsider.com/hurricane-harvey-has-created-is-a-looming-gas-shortage-2017-9
6.
King & Spalding
,
2017
, “
The Impact of Force Majeure on the Oil and Gas Supply Chain
,” JDSUPRA, accessed June 8, 2023, https://www.jdsupra.com/legalnews/the-impact-of-force-majeure-on-the-oil-47404/
7.
Karlin
,
S.
,
2021
, “
The Whole System Imploded. How Ida Crippled Louisiana's Gasoline Distribution
,” NolaCom, accessed June 8, 2023, https://www.nola.com/news/hurricane/the-whole-system-imploded-how-ida-crippled-louisianas-gasoline-distribution/article_22652816-0b78-11ec-a80d-3bd9b75da4ca.html
8.
Zborowski
,
M.
,
2017
, “
Harvey: US SPR Makes Emergency Release; Colonial Pipeline Segment Shut
,”
Oil Gas J.
, epub.https://www.ogj.com/generalinterest/article/17288383/harvey-us-spr-makes-emergency-release-colonial-pipeline-segmentshut
9.
AJOT
2020
, “
Post Hurricane Laura Impacts on the Gulf Coast Oil Industry and Ports
,”
Am. J. Transp.
, epub.https://ajot.com/news/post-hurricane-laura-impacts-on-the-gulf-coast-oil-industry-and-ports
10.
Cimellaro
,
G. P.
,
Reinhorn
,
A. M.
, and
Bruneau
,
M.
,
2010
, “
Framework for Analytical Quantification of Disaster Resilience
,”
Eng. Struct.
,
32
(
11
), pp.
3639
3649
.10.1016/j.engstruct.2010.08.008
11.
Lippert
,
A.
,
2010
, “
Hardening and Resiliency: U.S. Energy Industry Response to Recent Hurricane Seasons
,” Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability, U.S. Department of Energy, Washington, DC, pp.
1
71
.
12.
Pourhejazy
,
P.
,
Kwon
,
O. K.
,
Chang
,
Y. T.
, and
Park
,
H.
,
2017
, “
Evaluating Resiliency of Supply Chain Network: A Data Envelopment Analysis Approach
,”
Sustainability
,
9
(
2
), p.
255
.10.3390/su9020255
13.
Cimellaro
,
G. P.
,
Villa
,
O.
, and
Kim
,
H. U.
,
2013
, “
Resilience-Based Design of Natural Gas Pipelines
,”
World Environ.
,
4
, pp.
345
354
.10.1061/(ASCE)IS.1943-555X.0000204
14.
Nadeau
,
J.
,
2007
,
Improving the Resiliency of the Natural Gas Supply and Distribution Network
,
Naval Postgraduate School
,
Monterey, CA
.
15.
Bernier
,
C.
,
Elliott
,
J. R.
,
Padgett
,
J. E.
,
Kellerman
,
F.
, and
Bedient
,
P. B.
,
2017
, “
Evolution of Social Vulnerability and Risks of Chemical Spills During Storm Surge Along the Houston Ship Channel
,”
Nat. Hazards Rev.
,
18
(
4
), p. 04017013.10.1061/(ASCE)NH.1527-6996.0000252
16.
Ebad Sichani
,
M.
,
Anarde
,
K. A.
,
Capshaw
,
K. M.
,
Padgett
,
J. E.
,
Meidl
,
R. A.
,
Hassanzadeh
,
P.
,
Loch-Temzelides
,
T. P.
, and
Bedient
,
P. B.
,
2020
, “
Hurricane Risk Assessment of Petroleum Infrastructure in a Changing Climate
,”
Front. Built Environ.
,
6
, pp.
1
19
.10.3389/fbuil.2020.00104
17.
Dahitaleghani
,
N.
,
2016
, “
Analysis of Disruptions in the Gulf of Mexico Oil and Gas Industry Supply Chain and Related Economic Impacts
,” Louisiana State University, Baton Rouge, LO.
18.
Burleson
,
D. W.
,
Rifai
,
H. S.
,
Proft
,
J.
,
Dawson
,
C. N.
, and
Bedient
,
P. B.
,
2015
, “
Vulnerability of an Industrial Corridor in Texas to Storm Surge
,”
Nat. Hazards
,
77
(
2
), pp.
1183
1203
.10.1007/s11069-015-1652-7
19.
Burleson
,
D. W.
,
2015
, “
Modeling the Vulnerability of a Highly Industialized Estuary to Storm Surge With a Coupled ADCIRC, SWAN, and EFDC System
.” University of Houston, Houston, TX.
20.
AFPM
,
2017
, The 2017 Hurricane Season: Consolidated Report,
American Fuel & Petrochemical Manufacturers
, accessed Feb. 7, 2023, https://www.lamar.edu/_files/documents/resilience-recovery/grant/recovery-and-resiliency/consolidated-report.pdf.pdf
21.
EIA
,
2022
,
Refinery Utilization and Capacity
,
U.S. Energy Information Administration (EIA)
, accessed Feb. 7, 2023, https://www.eia.gov/dnav/pet/PET_PNP_UNC_DCU_R30_M.htm
22.
RIGZONE
. n.d., Oil & Gas News,
Rigzone
, accessed Feb. 7, 2023, https://www.rigzone.com/news/
23.
Reuters Staff
, n.d., Factbox Headlines,
Reuters
, accessed Feb. 7, 2023, https://www.reuters.com/news/archive/factbox
24.
Office of Cybersecurity Energy Security & ER (CESER)
,
2022
, Emergency Situation Reports.
Department of Energy
, accessed: Feb. 7, 2023, https://www.oe.netl.doe.gov/emergency_sit_rpt.aspx
25.
AP Staff Writers,
2021
,
Damaged Oil Refinery Closing; Parish Weighs Economic Impacts
,
Assoc Press
, accessed June 8, 2023, https://apnews.com/article/hurricane-ida-floods-business-mississippi-river-storms-cc7d00516965e67c8c1b64baf8af8f32
26.
U.S. Chemical Safety and Investigation Board
,
2007
,
Investigation Report Refinery Explosion and Fire BP Texas City
,
U.S. Chemical Safety and Investigation Board
, Texas City, TX, pp.
1
341
.
27.
U.S. Energy Information Administration (EIA),
2022
, Refinery & Blender Net Production,
U.S. Energy Information Administration (EIA)
, accessed Feb. 7, 2023, https://www.eia.gov/dnav/pet/pet_pnp_refp_dc_nus_mbbl_m.htm
28.
Homeland Infrastructure Foundation-Level Data (HIFLD),
2020
, Oil Refinery (Polygon) Shapefile,
Homeland Infrastructure Foundation-Level Data (HIFLD)
, accessed Feb. 7, 2023, https://hifld-geoplatform.opendata.arcgis.com/datasets/45155fc5a88948909576301a5b66a394/explore?location=42.322272%2C-109.317510%2C3.76
29.
USGS
,
2012
, Aerial Photography,
USGS
, accessed Feb. 7, 2023, http://eros.usgs.gov/aerial%0A-photography
30.
Coastal Emergency Risks Assessment (CERA),
2022
, Storm Surge - Wave - Compound Flood Guidance,
CERA
, accessed Feb. 7, 2023, https://cera.coastalrisk.live/
31.
Dawson
,
C. N.
,
2022
, The Computational Hydraulics Group Institute for Computational Engineering and Sciences,
Comput Hydraul Group, Univ Texas Austin
, Austin, TX, accessed Feb. 7, 2023, https://chg.oden.utexas.edu/
32.
Dawson
,
C. N.
,
2023
, “
Simulation Data of Storm Surge and Waves for Historical Hurricanes in the Gulf of Mexico
,” Hurricane Surge and Wave Data for Engineering Analysis. DesignSafe-CI.
33.
Chen
,
M.
, and
Xie
,
P.
,
2008
, “
CPC Unified Gauge-Based Analysis of Global Daily Precipiation
,”
Western Pacific Geophysics Meeting
, Cairns, Australia, 2.3A.
34.
Xie
,
P.
,
Chen
,
M.
,
Yang
,
S.
,
Yatagai
,
A.
,
Hayasaka
,
T.
,
Fukushima
,
Y.
, and
Liu
,
C.
,
2007
, “
A Gauge-Based Analysis of Daily Precipitation Over East Asia
,”
J. Hydrometeorol.
,
8
(
3
), pp.
607
626
.10.1175/JHM583.1
35.
Chen
,
M.
,
Shi
,
W.
,
Xie
,
P.
,
Silva
,
V. B. S.
,
Kousky
,
V. E.
,
Wayne Higgins
,
R.
, and
Janowiak
,
J. E.
,
2008
, “
Assessing Objective Techniques for Gauge-Based Analyses of Global Daily Precipitation
,”
J. Geophys. Res. Atmos.
,
113
(
D4
), pp.
1
13
.10.1029/2007JD009132
36.
National Hurricane Center,
2022
, Tropical Cyclone Reports.
National Oceanic and Atmospheric Administration
, accessed: Feb. 7, 2023, https://www.nhc.noaa.gov/data/#tcr
37.
Kaiser
,
M. J.
,
2017
, “
A Review of Refinery Complexity Applications
,”
Pet. Sci.
,
14
(
1
), pp.
167
194
.10.1007/s12182-016-0137-y
38.
U.S. Energy Information Administration (EIA)
,
2022
, Annual Refinery Capacity Report 2022,
U.S. Energy Information Administration
, Report No. Form EIA-820, accessed Feb. 7, 2023, https://www.eia.gov/petroleum/refinerycapacity/
39.
Feng
,
C. X.
,
2021
, “
A Comparison of Zero-Inflated and Hurdle Models for Modeling Zero-Inflated Count Data
,”
J. Stat. Distrib. Appl.
,
8
(
1
), p. 8.10.1186/s40488-021-00121-4
40.
Rözer
,
V.
,
Kreibich
,
H.
,
Schröter
,
K.
,
Müller
,
M.
,
Sairam
,
N.
,
Doss‐Gollin
,
J.
,
Lall
,
U.
, and
Merz
,
B.
,
2019
, “
Probabilistic Models Significantly Reduce Uncertainty in Hurricane Harvey Pluvial Flood Loss Estimates
,”
Earth's Future
,
7
(
4
), pp.
384
394
.10.1029/2018EF001074
41.
Famoye
,
F.
, and
Singh
,
K. P.
,
2021
,
Zero-Inflated Generalized Poisson Regression Model With an Application to Domestic Violence Data
.
J. Data Sci.
,
4
(
1
),
117
130
.10.6339/JDS.2006.04(1).257
42.
Lee
,
A. H.
,
Wang
,
K.
,
Scott
,
J. A.
,
Yau
,
K. K. W.
, and
McLachlan
,
G. J.
,
2006
, “
Multi-Level Zero-Inflated Poisson Regression Modelling of Correlated Count Data With Excess Zeros
,”
Stat. Methods Med. Res.
,
15
(
1
), pp.
47
61
.10.1191/0962280206sm429oa
43.
Lambert
,
D.
,
1992
, “
Zero-Inflated Poisson Regression, With an Application to Defects in Manufacturing
,”
Technometrics
,
34
(
1
), pp.
1
14
.10.2307/1269547
44.
Gelman
,
A.
,
Hill
,
J.
, and
Vehtari
,
A.
,
2022
, Regression and Other Stories, Cambridge University Press, Cambridge, UK, pp.
1
532
.
45.
Liu
,
H.
,
Davidson
,
R. A.
,
Rosowsky
,
D. V.
, and
Stedinger
,
J. R.
,
2005
, “
Negative Binomial Regression of Electric Power Outages in Hurricanes
,”
J. Infrastruct. Syst.
,
11
(
4
), pp.
258
267
.10.1061/(ASCE)1076-0342(2005)11:4(258)
46.
Zhou
,
M.
, and
Carin
,
L.
,
2015
, “
Negative Binomial Process Count and Mixture Modeling
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
37
(
2
), pp.
307
320
.10.1109/TPAMI.2013.211
47.
Mullahy
,
J.
,
1986
, “
Specification and Testing of Some Modified Count Data Models
,”
J. Econom.
,
33
(
3
), pp.
341
365
.10.1016/0304-4076(86)90002-3
48.
Ng
,
A. Y.
, and
Jordan
,
M. I.
,
2008
, “
On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naive Bayes
,”
Neural Process Lett.
,
28
, pp.
169
87
.
49.
Hodson
,
T. O.
,
2022
, “
Root-Mean-Square Error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not
,”
Geosci. Model Dev.
,
15
(
14
), pp.
5481
5487
.10.5194/gmd-15-5481-2022
50.
Khair
,
U.
,
Fahmi
,
H.
,
Hakim
,
S. A.
, and
Rahim
,
R.
,
2017
, “
Forecasting Error Calculation With Mean Absolute Deviation and Mean Absolute Percentage Error
,”
J. Phys. Conf. Ser.
,
930
, p.
012002
6
.10.1088/1742-6596/930/1/012002
51.
U.S. Energy Information Administration (EIA),
2022
, Refinery Capacity Report. Top 10 U.S. Refineries Operable Capacity,
U.S. Energy Information Administration (EIA)
, accessed Feb. 7, 2023, https://www.eia.gov/energyexplained/oil-and-petroleum-products/refining-crude-oil-refinery-rankings.php
52.
Khakzad
,
N.
, and
Van Gelder
,
P.
,
2018
, “
Vulnerability of Industrial Plants to Flood-Induced Natechs: A Bayesian Network Approach
,”
Reliab. Eng. Syst. Saf.
,
169
, pp.
403
411
.10.1016/j.ress.2017.09.016
53.
FEMA
,
2013
,
Flood Insurance Study–Harris County
,
Texas and Incorporated Areas
,
Washington, DC
.
54.
Dawson
,
C. N.
,
2021
,
Texas FEMA Hurricane Winds and Surge
, DesignSafe-CI.10.17603/ds2-68a9-0s64 v1
55.
U.S. Energy Information Administration (EIA)
,
2022
, Movements by Pipeline, Tanker, Barge and Rail Between PAD Districts,
U.S. Energy Information Administration (EIA)
, accessed Feb. 7, 2023, https://www.eia.gov/dnav/pet/pet_move_ptb_a_EP00_TNR_mbbl_a.htm
56.
U.S. Energy Information Administration (EIA),
2022
,
Imports by Area of Entry
,
U.S. Energy Information Administration (EIA)
, accessed June 8, 2023, https://www.eia.gov/dnav/pet/PET_MOVE_IMP_A_EPC0_IM0_MBBL_A.htm
57.
U.S. Energy Information Administration (EIA)
,
2022
, Exports,
U.S. Energy Information Administration (EIA)
, accessed Feb. 7, 2023, https://www.eia.gov/dnav/pet/pet_move_exp_dc_NUS-Z00_mbbl_m.htm
58.
Capshaw
,
K. M.
, and
Padgett
,
J. E.
,
2022
, “
Global Analysis of Coastal Flood Risk to Petrochemical Distribution Network in a Changing Climate
,”
Proc. Int. Conf, Nat. Hazards Infrastruct.
,
1
(
3
), pp.
52
60
.https://iconhic.com/2021/proceedings/
59.
Capshaw
,
K. M.
, and
Padgett
,
J. E.
,
2022
, “
A Global Analysis of Coastal Flood Risk to the Petrochemical Distribution Network in a Changing Climate
,”
Resilient Cities Struct.
,
1
(
3
), pp.
52
60
.10.1016/j.rcns.2022.10.002
60.
Severe Storm Prediction Education & Evacuation from Disasters Center
,
2015
,
Galveston Bay Park: A Vision for Houston and Galveston Bay
, SSPEED Center.https://www.sspeed.rice.edu/gbpp
61.
Robert Taylor
,
J.
,
2020
, “
Organizational Failure Analysis for Industrial Safety
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng.
,
6
(
1
), p.
011006
.10.1115/1.4044945
62.
Esouilem
,
M.
,
Bouzid
,
A. H.
, and
Nadeau
,
S.
,
2020
, “
Frequency Failure Causes Analysis of Pressure Vessel and Piping Equipment: Case Study of the Alberta Petrochemical Industry
,”
ASCE-ASME J. Risk. Uncertain. Eng. Syst. Part B Mech. Eng.
,
6
(
4
), p.
041003
.10.1115/1.4047009
63.
Scherb
,
A.
,
Garre
,
L.
, and
Straub
,
D.
,
2017
, “
Reliability and Component Importance in Networks Subject to Spatially Distributed Hazards Followed by Cascading Failures
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng.
,
3
(
2
), p.
021007
.10.1115/1.4036091
You do not currently have access to this content.