Abstract

A new method for reliable fatigue life prediction in metal structural components is developed, which quantifies uncertainties using interval variables. Using this crack-initiation-based method, first, the uncertainties in laboratory test data for the fatigue failure of a structural detail are enumerated. This uncertainty quantification is performed through an interval-based enveloping procedure that relates the interval stress ranges to the number of cycles to failure. This will lead to the construction of an interval S–N relationship. Next, the uncertainties in field test data are enumerated in the extremum values of each stress range, as intervals, leading to the construction of interval stress ranges. For both the laboratory and field data uncertainty analyses, the mean stress effects are considered. Next, the interval damage accumulated over the duration of the field data is determined using the constructed interval S–N relationship and the obtained interval stress ranges. Then, the interval existing damage and interval remaining life are determined. Finally, as a conservative measure, the minimum remaining fatigue life is obtained in which all uncertainties are considered. A numerical example illustrating the developed method is presented, and the results are compared with results obtained by both Monte Carlo simulation and optimization. Using this method, for the numerical example considered, it is shown that the results for bounds on the existing damage and the remaining fatigue life are sharp. Moreover, due to its set-based approach, the method is significantly more computationally efficient when compared with iterative procedures.

References

1.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
12
(
3
), pp.
A159
A164
.10.1115/1.4009458
2.
Basquin
,
O. H.
,
1910
, “
The Exponential Law of Endurance Tests
,”
Am. Soc. Test. Mater.
,
10
, pp.
625
630
.
3.
Ang
,
A. H.-S.
, and
Munse
,
W. H.
,
1975
, “
Practical Reliability Basis for Structural Fatigue
,”
ASCE Annual National Structural Engineering Conference
,
American Society of Civil Engineers
,
New Orleans
, Apr. 14–18, Paper No. 2494.
4.
Pourzeynali
,
S.
, and
Datta
,
T. K.
,
2005
, “
Reliability Analysis of Suspension Bridges Against Fatigue Failure From the Gusting of Wind
,”
J. Bridge Eng.
,
10
(
3
), pp.
262
271
.10.1061/(ASCE)1084-0702(2005)10:3(262)
5.
Ni
,
Y. Q.
,
Ye
,
X. W.
, and
Ko
,
J. M.
,
2010
, “
Monitoring-Based Fatigue Reliability Assessment of Steel Bridges: Analytical Model and Application
,”
J. Struct. Eng.
,
136
(
12
), pp.
1563
1573
.10.1061/(ASCE)ST.1943-541X.0000250
6.
Kwon
,
K.
,
Frangopol
,
D. M.
, and
Soliman
,
M.
,
2012
, “
Probabilistic Fatigue Life Estimation of Steel Bridges by Using a Bilinear S-N Approach
,”
J. Bridge Eng.
,
17
(
1
), pp.
58
70
.10.1061/(ASCE)BE.1943-5592.0000225
7.
Wu
,
J.
,
Chen
,
S.
, and
van de Lindt
,
J. W.
,
2012
, “
Fatigue Assessment of Slender Long-Span Bridges: Reliability Approach
,”
J. Bridge Eng.
,
17
(
1
), pp.
47
57
.10.1061/(ASCE)BE.1943-5592.0000232
8.
Yan
,
D.
,
Luo
,
Y.
,
Lu
,
N.
,
Yuan
,
M.
, and
Beer
,
M.
,
2017
, “
Fatigue Stress Spectra and Reliability Evaluation of Short- to Medium-Span Bridges Under Stochastic and Dynamic Traffic Loads
,”
J. Bridge Eng.
,
22
(
12
), p.
04017102
.10.1061/(ASCE)BE.1943-5592.0001137
9.
Siwowski
,
T.
,
Kulpa
,
M.
, and
Janas
,
L.
,
2019
, “
Remaining Fatigue Life Prediction of Welded Details in an Orthotropic Steel Bridge Deck
,”
J. Bridge Eng.
,
24
(
12
), p.
05019013
.10.1061/(ASCE)BE.1943-5592.0001490
10.
Wirsching
,
P. H.
,
1984
, “
Fatigue Reliability for Offshore Structures
,”
J. Struct. Eng.
,
110
(
10
), pp.
2340
2356
.10.1061/(ASCE)0733-9445(1984)110:10(2340)
11.
Kanegaonkar
,
H. B.
, and
Haldar
,
A.
,
1987
, “
Non-Gaussian Response of Offshore Platforms: Fatigue
,”
J. Struct. Eng.
,
113
(
9
), pp.
1899
1908
.10.1061/(ASCE)0733-9445(1987)113:9(1899)
12.
Agerskov
,
H.
, and
Pedersen
,
N. T.
,
1992
, “
Fatigue Life of Offshore Steel Structures Under Stochastic Loading
,”
J. Struct. Eng.
,
118
(
8
), pp.
2101
2117
.10.1061/(ASCE)0733-9445(1992)118:8(2101)
13.
Ricles
,
J. M.
, and
Leger
,
P.
,
1993
, “
Marine Component Fatigue Reliability
,”
J. Struct. Eng.
,
119
(
7
), pp.
2215
2234
.10.1061/(ASCE)0733-9445(1993)119:7(2215)
14.
Sen
,
T. K.
,
2006
, “
Probability of Fatigue Failure in Steel Catenary Risers in Deep Water
,”
J. Eng. Mech.
,
132
(
9
), pp.
1001
1006
.10.1061/(ASCE)0733-9399(2006)132:9(1001)
15.
Bengtsson
,
A.
, and
Rychlik
,
I.
,
2009
, “
Uncertainty in Fatigue Life Prediction of Structures Subject to Gaussian Loads
,”
Probab. Eng. Mech.
,
24
(
2
), pp.
224
235
.10.1016/j.probengmech.2008.06.004
16.
Diekfuss
,
J. A.
, and
Foley
,
C. M.
,
2016
, “
Modeling Error Uncertainty Characterization for Reliability-Based Fatigue Assessment in Sign Support Structures
,”
J. Struct. Eng.
,
142
(
7
), p.
04016042
.10.1061/(ASCE)ST.1943-541X.0001283
17.
Pasquier
,
R.
,
Goulet
,
J. A.
,
Acevedo
,
C.
, and
Smith
,
I. C. F.
,
2014
, “
Improving Fatigue Evaluations of Structures Using in-Service Behavior Measurement Data
,”
J. Bridge Eng.
,
19
(
11
), p.
04014045
.10.1061/(ASCE)BE.1943-5592.0000619
18.
Pasquier
,
R.
,
D'Angelo
,
L.
,
Goulet
,
J. A.
,
Acevedo
,
C.
,
Nussbaumer
,
A.
, and
Smith
,
I. C. F.
,
2016
, “
Measurement, Data Interpretation, and Uncertainty Propagation for Fatigue Assessments of Structures
,”
J. Bridge Eng.
,
21
(
5
), p.
04015087
.10.1061/(ASCE)BE.1943-5592.0000861
19.
Ben-Haim
,
Y.
,
1994
, “
Fatigue Lifetime With Load Uncertainty Represented by Convex Model
,”
J. Eng. Mech.
,
120
(
3
), pp.
445
462
.10.1061/(ASCE)0733-9399(1994)120:3(445)
20.
Long
,
X. Y.
,
Jiang
,
C.
,
Liu
,
K.
,
Han
,
X.
,
Gao
,
W.
, and
Li
,
B. C.
,
2018
, “
An Interval Analysis Method for Fatigue Crack Growth Life Prediction With Uncertainty
,”
Comput. Struct.
,
210
, pp.
1
11
.10.1016/j.compstruc.2018.09.005
21.
Gu
,
Z.
, and
Ma
,
X.
,
2018
, “
A Feasible Method for the Estimation of the Interval Bounds Based on Limited Strain-Life Fatigue Data
,”
Int. J. Fatigue
,
116
, pp.
172
179
.10.1016/j.ijfatigue.2018.06.024
22.
Sofi
,
A.
,
Muscolino
,
G.
, and
Giunta
,
F.
,
2019
, “
Fatigue Analysis of Structures With Interval Axial Stiffness Subjected to Stationary Stochastic Excitations
,”
Meccanica
,
54
(
9
), pp.
1471
1487
.10.1007/s11012-019-01022-2
23.
Carlson
,
R. L.
, and
Kardomateas
,
G. A.
,
1996
,
An Introduction to Fatigue in Metals and Composites
,
Chapman & Hall
,
London, UK
.
24.
Palmgren
,
A.
,
1924
, “
Die Lebensdauer Von Kugellagern (Life Time of Bearings)
,”
Verfahrenstechinik
,
68
, pp.
339
341
.
25.
Schutz
,
W.
,
1979
, “
The Prediction of Fatigue Life in the Crack Initiation and Propagation Stages – a State of the Art Survey
,”
Eng. Fract. Mech.
,
11
(
2
), pp.
405
421
.10.1016/0013-7944(79)90015-8
26.
Matsuishi
,
M.
, and
Endo
,
T.
,
1968
,
Fatigue of Metals Subjected to Varying Stress
,
Japan Society of Mechanical Engineering
, Proceedings of the Kyushu Branch of Japan Society of Mechanics Engineering, Fukuoka, Japan, pp. 37–40 (in Japanese).
27.
Goodman
,
J.
,
1899
,
Mechanics Applied to Engineering, Longman
,
Green & Company
,
London, UK
.
28.
Gerber
,
W. Z.
,
1874
, “
Calculation of the Allowable Stresses in Iron Structures
,”
Bayer Archif. Eng.
,
6
(
6
), pp.
101
110
.
29.
Soderberg
,
C. R.
,
1930
, “
Factor of Safety and Working Stress
,”
Trans. Am. Soc. Mech. Eng.
,
52
, pp.
13
28
.
30.
Moses
,
F.
,
Schilling
,
C. G.
, and
Raju
,
K. S.
,
1987
, “
Fatigue Evaluation Procedures for Steel Bridges
,” Transportation Research Board, National Research Council, Washington, DC, Report No. NCHRP No. 299.
31.
Fu
,
G.
,
Feng
,
J.
,
Dekelbab
,
W.
,
Moses
,
F.
,
Cohen
,
H.
,
Mertz
,
D.
, and
Thompson
,
P.
,
2003
, “
Effect of Truck Weight on Bridge Network Costs
,” NCHRP Report 495. Transportation Research Board, National Research Council, Washington, DC, Report No. NCHRP No. 299.
32.
Bowman
,
M. D.
,
Fu
,
G.
,
Zhou
,
Y. E.
,
Connor
,
R. J.
, and
Godbole
,
A. A.
,
2012
, “
Fatigue Evaluation of Steel Bridges
,” Transportation Research Board, National Research Council, Washington, DC, Report No. NCHRP No. 721.
33.
Moore
,
R. E.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
34.
Moore
,
R. E.
,
1966
,
Interval Analysis
,
Prentice Hall
,
Englewood Cliff, NJ
.
35.
Ferson
,
S.
, and
Kreinovich
,
V.
,
2006
, “
Modeling Correlation and Dependence Among Intervals
,”
Proceedings of the Second International Workshop on Reliable Engineering Computing
,
Savannah, Georgia
, Feb. 22–24, pp.
115
126
.
36.
Fisher
,
J. W.
,
Frank
,
K. H.
,
Hirt
,
M. A.
, and
McNamee
,
B. M.
,
1969
, “
Effect of Weldments on the Fatigue Strength of Steel Beams
,” Fritz Engineering Laboratory, Department of Civil Engineering, Lehigh University, Bethlehem, PA, Report No. 334.2.
37.
Ruhl
,
J. A.
, and
Walker
,
W. H.
,
1975
, “
Stress Histories for Highway Bridges Subjected to Traffic Loading
,” Department of Civil Engineering, University of Illinois, Urbana, IL, Report No. UILU-ENG-75-2004.
38.
MATLAB
, 2019, “
MATLAB R2019a [Computer Software]
,”
MathWorks
,
Natick, MA
.
39.
Byrd
,
R. H.
,
Hribar
,
M. E.
, and
Nocedal
,
J.
,
1999
, “
An Interior Point Algorithm for Large-Scale Nonlinear Programming
,”
SIAM J. Optim.
,
9
(
4
), pp.
877
900
.10.1137/S1052623497325107
40.
Byrd
,
R. H.
,
Gilbert
,
J. C.
, and
Nocedal
,
J.
,
2000
, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,”
Math. Program.
,
89
(
1
), pp.
149
185
.10.1007/PL00011391
41.
Waltz
,
R. A.
,
Morales
,
J. L.
,
Nocedal
,
J.
, and
Orban
,
D.
,
2006
, “
An Interior Algorithm for Nonlinear Optimization That Combines Line Search and Trust Region Steps
,”
Math. Program.
,
107
(
3
), pp.
391
408
.10.1007/s10107-004-0560-5
You do not currently have access to this content.