Abstract

Government agencies, globally, strive to minimize the likelihood and frequency of human death and severe injury on road transport systems. From an engineering design standpoint, the minimization of these road accident effects on occupants becomes a critical design goal. This necessitates the quantification and management of injury risks on the human body in response to several vehicular impact variables and their associated uncertainties for different crash scenarios. In this paper, we present a decision-based, robust design (RD) framework to quantify and manage the impact-based injury risks on occupants for different computational model-based car crash scenarios. The key functionality offered is the designer's capability to conduct robust concept exploration focused on managing the selected impact variables and associated uncertainties, such that injury risks are controlled within acceptable levels. The framework's efficacy is tested for near-side impact scenarios with impact velocity and angle of impact as the critical variables of interest. Two injury criteria, namely, head injury criterion (HIC) and lateral neck injury criteria (Lateral Nij) are selected to quantitatively measure the head and neck injury risks in each crash simulation. Using the framework, a RD problem is formulated to determine the combination of impact variables that best satisfies the injury goals defined. The framework and associated design constructs are generic and support the formulation and decision-based robust concept exploration of similar problems involving models under uncertainty. Our focus in this paper is on the framework rather than the results per se.

References

1.
Toroyan
,
T.
, and
Laych
,
K.
,
2015
,
Global Status Report on Road Safety 2015
,
World Health Organization
,
Geneva
.
2.
Schmitt
,
K.-U.
,
Niederer
,
P. F.
,
Muser
,
M. H.
, and
Walz
,
F.
,
2010
,
Trauma Biomechanics-Accidental Injury in Traffic and Sport
,
Springer Science & Business Media
, Berlin.
3.
Taylor
,
C. A.
,
Bell
,
J. M.
,
Breiding
,
M. J.
, and
Xu
,
L.
,
2017
, “
Traumatic Brain Injury–Related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2007 and 2013
,”
MMWR Surveillance Summaries
,
66
(
9
), pp.
1
16
.10.15585/mmwr.ss6609a1
4.
National Spinal Cord Injury Statistical Center,
2017, 2017 Annual Statistical Report for the Spinal Cord Injury Model Systems Public Version,
University of Alabama at Birmingham
,
Birmingham, Alabama
, https://www.nscisc.uab.edu
5.
Versace
,
J.
,
1971
, “
A Review of the Severity Index
,”
SAE
Paper No. 710881.10.4271/710881
6.
Kleinberger
,
M.
,
Sun
,
E.
,
Eppinger
,
R.
,
Kuppa
,
S.
, and
Saul
,
R.
,
1998
, “
Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems
,”
NHTSA Docket
,
4405
(
9
), pp.
12
17
.https://rosap.ntl.bts.gov/view/dot/14738
7.
Eppinger
,
R.
,
Kuppa
,
S.
,
Saul
,
R.
, and
Sun
,
E.
,
2000
,
Supplement: Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems: II
,
NHTSA
, Washington, DC.
8.
Henn
,
H.-W.
,
1998
, “
Crash Tests and the Head Injury Criterion
,”
Teaching Math. Appl.
,
17
(
4
), pp.
162
170
.10.1093/teamat/17.4.162
9.
Gabler
,
L. F.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2016
, “
Assessment of Kinematic Brain Injury Metrics for Predicting Strain Responses in Diverse Automotive Impact Conditions
,”
Ann. Biomed. Eng.
,
44
(
12
), pp.
3705
3718
.10.1007/s10439-016-1697-0
10.
Nellippallil
,
A. B.
,
Berthelson
,
P. R.
,
Peterson
,
L.
, and
Prabhu
,
R.
,
2020
, “
Head and Neck Injury Based Robust Design for Vehicular Crashworthiness
,”
ASME
Paper No. IDETC2020-22539.10.1115/IDETC2020-22539
11.
Nellippallil
,
A. B.
,
Berthelson
,
P. R.
,
Peterson
,
L.
, and
Prabhu
,
R. K.
,
2022
, “
Robust Concept Exploration of Driver's Side Vehicular Impacts for Human-Centric Crashworthiness
,”
Multiscale Biomechanical Modeling of the Brain
,
M. F.
Horstemeyer
, and
R. K.
Prabhu
, eds.,
Academic Press
, Cambridge, MA, pp.
153
176
.
12.
Takhounts
,
E. G.
,
Craig
,
M. J.
,
Moorhouse
,
K.
,
McFadden
,
J.
, and
Hasija
,
V.
,
2013
, “
Development of brain injury criteria (BrIC)
,” SAE Technical Paper.
13.
Prasad
,
P.
,
Mertz
,
H. J.
,
Dalmotas
,
D. J.
,
Augenstein
,
J. S.
, and
Digges
,
K.
,
2010
, “
Evaluation of the Field Relevance of Several Injury Risk Functions
,”
Stapp Car Crash J.
,
54
, p.
49
.https://doi.org/10.4271/2010-22-0004
14.
Soltis
,
S.
,
2001
, “
An Overview of Existing and Needed Neck Impact Injury Criteria for Sideward Facing Aircraft Seats
,”
Proc. The Third Triennial International Aircraft Fire and Cabin Safety Research Conference
, Atlantic City, NJ, Oct. 22–25, pp.
22
25
.
15.
Takhounts
,
E. G.
,
Eppinger
,
R. H.
,
Campbell
,
J. Q.
,
Tannous
,
R. E.
,
Power
,
E. D.
, and
Shook
,
L. S.
,
2003
, “
On the Development of the SIMon Finite Element Head Model
,”
SAE
Paper No. 2003-22-0007.10.4271/2003-22-0007
16.
Takhounts
,
E. G.
,
Ridella
,
S. A.
,
Hasija
,
V.
,
Tannous
,
R. E.
,
Campbell
,
J. Q.
,
Malone
,
D.
,
Danelson
,
K.
,
Stitzel
,
J.
,
Rowson
,
S.
, and
Duma
,
S.
,
2008
, “
Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model
,”
SAE
Paper No. 2008-22-0001.10.4271/2008-22-0001
17.
Fice
,
J. B.
,
Cronin
,
D. S.
, and
Panzer
,
M. B.
,
2011
, “
Cervical Spine Model to Predict Capsular Ligament Response in Rear Impact
,”
Ann. Biomed. Eng.
,
39
(
8
), pp.
2152
2162
.10.1007/s10439-011-0315-4
18.
Panzer
,
M. B.
,
Fice
,
J. B.
, and
Cronin
,
D. S.
,
2011
, “
Cervical Spine Response in Frontal Crash
,”
Med. Eng. Phy.
,
33
(
9
), pp.
1147
1159
.10.1016/j.medengphy.2011.05.004
19.
Panzer
,
M. B.
, and
Cronin
,
D. S.
,
2009
, “
C4–C5 Segment Finite Element Model Development, Validation, and Load-Sharing Investigation
,”
J. Biomech.
,
42
(
4
), pp.
480
490
.10.1016/j.jbiomech.2008.11.036
20.
Danelson
,
K. A.
,
Gayzik
,
F. S.
,
Mao
,
M. Y.
,
Martin
,
R. S.
,
Duma
,
S. M.
, and
Stitzel
,
J. D.
, “
Bilateral Carotid Artery Injury Response in Side Impact Using a Vessel Model Integrated With a Human Body Model
,”
Proc. Annals of Advances in Automotive Medicine/Annual Scientific Conference
, Association for the Advancement of Automotive Medicine, Oct., p.
271
.
21.
Noureddine
,
A.
,
Eskandarian
,
A.
, and
Digges
,
K.
,
2002
, “
Computer Modeling and Validation of a Hybrid III Dummy for Crashworthiness Simulation
,”
Math. Comp. Model.
,
35
(
7–8
), pp.
885
893
.10.1016/S0895-7177(02)00057-2
22.
Canha
,
J.
,
DiMasi
,
F.
,
Tang
,
Y.
,
Haffner
,
M.
, and
Shams
,
T.
,
2000
, “
Development of a Finite Element Model of the Thor Crash Test Dummy
,”
SAE
Paper No. 2000-01-0159.10.4271/2000-01-0159
23.
Iwamoto
,
M.
,
Kisanuki
,
Y.
,
Watanabe
,
I.
,
Furusu
,
K.
,
Miki
,
K.
, and
Hasegawa
,
J.
,
2002
, “
Development of a Finite Element Model of the Total Human Model for Safety (THUMS) and Application to Injury Reconstruction
,”
Proceedings of the 2002 International Research Council on Biomechanics of Injury, Munich, Germany
, Sept. 18–20, pp.
31
42
.http://www.ircobi.org/wordpress/downloads/irc0111/2002/Session1/1.2.pdf
24.
Iwamoto
,
M.
,
Omori
,
K.
,
Kimpara
,
H.
,
Nakahira
,
Y.
,
Tamura
,
A.
,
Watanabe
,
I.
,
Miki
,
K.
,
Hasegawa
,
J.
,
Oshita
,
F.
, and
Nagakute
,
A.
, “
Recent Advances in THUMS: Development of Individual Internal Organs, Brain, Small Female and Pedestrian Model
,”
Proc. Proceedings of 4th European LS Dyna Users Conference
, May, pp.
1
10
.
25.
Iwamoto
,
M.
,
Nakahira
,
Y.
,
Tamura
,
A.
,
Kimpara
,
H.
,
Watanabe
,
I.
, and
Miki
,
K.
, “
Development of Advanced Human Models in THUMS
,”
Proc. Proc. 6th European LS-DYNA Users' Conference
, May, pp.
47
56
.
26.
Gayzik
,
F. S.
,
Moreno
,
D. P.
,
Vavalle
,
N. A.
,
Rhyne
,
A. C.
, and
Stitzel
,
J. D.
,
2011
, “
Development of the Global Human Body Models Consortium Mid-Sized Male Full Body Model
,” Proc. International Workshop on Human Subjects for Biomechanical Research,
National Highway Traffic Safety Administration
, Vol. 39. Washington, DC.
27.
Gayzik
,
F. S.
,
Moreno
,
D. P.
,
Vavalle
,
N. A.
,
Rhyne
,
A. C.
, and
Stitzel
,
J. D.
,
2012
, “
Development of a Full Human Body Finite Element Model for Blunt Injury Prediction Utilizing a Multi-Modality Medical Imaging Protocol
,”
Proc. 12th International LS-DYNA User Conference
, Dearborn, MI, June 3, pp.
3
5
.
28.
Kitagawa
,
Y.
,
Yasuki
,
T.
, and
Hasegawa
,
J.
,
2006
, “
A Study of Cervical Spine Kinematics and Joint Capsule Strain in Rear Impacts Using a Human FE Model
,” SAE Technical Paper.
29.
Kitagawa
,
Y.
,
Yasuki
,
T.
, and
Hasegawa
,
J.
,
2008
, “
Research Study on Neck Injury Lessening With Active Head Restraint Using Human Body FE Model
,”
Traffic Injury Prev.
,
9
(
6
), pp.
574
582
.10.1080/15389580802381954
30.
Sevagan
,
G.
,
Zhu
,
F.
,
Jiang
,
B.
, and
Yang
,
K. H.
,
2013
, “
Numerical Simulations of the Occupant Head Response in an Infantry Vehicle Under Blunt Impact and Blast Loading Conditions
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
227
(
7
), pp.
778
787
.10.1177/0954411913483430
31.
Mattos
,
G. A.
,
Mcintosh
,
A. S.
,
Grzebieta
,
R.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2015
, “
Sensitivity of Head and Cervical Spine Injury Measures to Impact Factors Relevant to Rollover Crashes
,”
Traffic Injury Prev.
,
16
(
sup1
), pp.
S140
S147
.10.1080/15389588.2015.1012585
32.
Deng
,
X.
,
Potula
,
S.
,
Grewal
,
H.
,
Solanki
,
K.
,
Tschopp
,
M.
, and
Horstemeyer
,
M.
,
2013
, “
Finite Element Analysis of Occupant Head Injuries: Parametric Effects of the Side Curtain Airbag Deployment Interaction With a Dummy Head in a Side Impact Crash
,”
Accident Anal. Prev.
,
55
, pp.
232
241
.10.1016/j.aap.2013.03.016
33.
Deng
,
X.
,
Chen
,
S. A.
,
Prabhu
,
R.
,
Jiang
,
Y.
,
Mao
,
Y.
, and
Horstemeyer
,
M.
,
2014
, “
Finite Element Analysis of the Human Head Under Side Car Crash Impacts at Different Speeds
,”
J. Mech. Med. Biol.
,
14
(
06
), p.
1440002
.10.1142/S0219519414400028
34.
Hayashi
,
S.
,
Yasuki
,
T.
, and
Kitagawa
,
Y.
,
2008
, “
Occupant Kinematics and Estimated Effectiveness of Side Airbags in Pole Side Impacts Using a Human FE Model With Internal Organs
,”
SAE Technical Paper.
35.
Hwang
,
E.
,
Hu
,
J.
,
Chen
,
C.
,
Klein
,
K. F.
,
Miller
,
C. S.
,
Reed
,
M. P.
,
Rupp
,
J. D.
, and
Hallman
,
J. J.
,
2016
, “
Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side Impacts
,”
SAE
Paper No. 2016-22-0014.10.4271/2016-22-0014
36.
Cadete
,
R. N.
,
Dias
,
J. P.
, and
Pereira
,
M. S.
,
2005
, “
Optimization in Vehicle Crashworthiness Design Using Surrogate Models
,”
6th World Congresses of Structural and Multidisciplinary Optimization
, Rio de Janeiro, Brazil, June, pp.
1
10
.
37.
Zhu
,
P.
,
Pan
,
F.
,
Chen
,
W.
, and
Zhang
,
S.
,
2012
, “
Use of Support Vector Regression in Structural Optimization: Application to Vehicle Crashworthiness Design
,”
Math. Comput. Simul.
,
86
, pp.
21
31
.10.1016/j.matcom.2011.11.008
38.
Zhang
,
S.
,
Zhu
,
P.
, and
Chen
,
W.
,
2013
, “
Crashworthiness-Based Lightweight Design Problem Via New Robust Design Method Considering Two Sources of Uncertainties
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
227
(
7
), pp.
1381
1391
.10.1177/0954406212460824
39.
Fang
,
H.
,
Solanki
,
K.
, and
Horstemeyer
,
M.
,
2005
, “
Numerical Simulations of Multiple Vehicle Crashes and Multidisciplinary Crashworthiness Optimization
,”
Int. J. Crashworthiness
,
10
(
2
), pp.
161
172
.10.1533/ijcr.2005.0335
40.
Hamza
,
K.
, and
Saitou
,
K.
, “
Vehicle Crashworthiness Design Via a Surrogate Model Ensemble and a co-Evolutionary Genetic Algorithm
,”
ASME
Paper No. DETC2005-84965.10.1115/DETC2005-84965
41.
Pan
,
F.
,
Zhu
,
P.
,
Chen
,
W.
, and
Li
,
C.-Z.
,
2013
, “
Application of Conservative Surrogate to Reliability Based Vehicle Design for Crashworthiness
,”
J. Shanghai Jiaotong Univ. (Sci.)
,
18
(
2
), pp.
159
165
.10.1007/s12204-012-1240-x
42.
Hamza
,
K.
, and
Saitou
,
K.
,
2011
, “
Automated Vehicle Structural Crashworthiness Design Via a Crash Mode Matching Algorithm
,”
ASME J. Mech. Des.
,
133
(
1
), p. 011003.10.1115/1.4003037
43.
Hamza
,
K.
, and
Saitou
,
K.
,
2005
, “
Design Optimization of Vehicle Structures for Crashworthiness Using Equivalent Mechanism Approximations
,”
ASME J. Mech. Des.
,
127
(
3
), pp.
485
492
.10.1115/1.1862680
44.
Hamza
,
K.
, and
Saitou
,
K.
,
2012
, “
A Co-Evolutionary Approach for Design Optimization Via Ensembles of Surrogates With Application to Vehicle Crashworthiness
,”
ASME J. Mech. Des.
,
134
(
1
), p. 011001.10.1115/1.4005439
45.
Yang
,
R.
,
Wang
,
N.
,
Tho
,
C.
,
Bobineau
,
J.
, and
Wang
,
B.
,
2005
, “
Metamodeling Development for Vehicle Frontal Impact Simulation
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
1014
1020
.10.1115/1.1906264
46.
Liu
,
K.
,
Detwiler
,
D.
, and
Tovar
,
A.
,
2017
, “
Optimal Design of Nonlinear Multimaterial Structures for Crashworthiness Using Cluster Analysis
,”
ASME J. Mech. Des.
,
139
(
10
), p.
101401
.10.1115/1.4037620
47.
Prasanna
,
V.
,
2015
, “
Development of Response Surface Data on the Head Injury Criteria Associated with Various Aircraft and Automotive Head Impact Scenarios
,” MS Thesis,
Wichita State University
, Wichita, KS.
48.
Nie
,
B.
,
Xia
,
Y.
,
Zhou
,
Q.
,
Huang
,
J.
,
Deng
,
B.
, and
Neal
,
M.
,
2013
, “
Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations
,”
SAE Int. J. Transp. Saf.
,
1
(
2
), pp.
286
296
.10.4271/2013-01-0216
49.
Tay
,
Y. Y.
,
Moradi
,
R.
, and
Lankarani
,
H. M.
, “
A Response Surface Methodology in Predicting Injuries to Out-of-Position Occupants From Frontal Airbags
,”
ASME
Paper No. IMECE2014-36782.10.1115/IMECE2014-36782
50.
Wimmer
,
P.
,
Benedikt
,
M.
,
Huber
,
P.
, and
Ferenczi
,
I.
,
2015
, “
Fast Calculating Surrogate Models for Leg and Head Impact in Vehicle–Pedestrian Collision Simulations
,”
Traffic Injury Prev.
,
16
(
sup1
), pp.
S84
S90
.10.1080/15389588.2015.1014902
51.
Pelenytė-Vyšniauskienė
,
L.
, and
Jurkauskas
,
A.
,
2007
, “
The Research Into Head Injury Criteria Dependence on Car Speed
,”
Transport
,
22
(
4
), pp.
269
274
.10.3846/16484142.2007.9638140
52.
Jurewicz
,
C.
,
Sobhani
,
A.
,
Woolley
,
J.
,
Dutschke
,
J.
, and
Corben
,
B.
,
2016
, “
Exploration of Vehicle Impact Speed–Injury Severity Relationships for Application in Safer Road Design
,”
Transp. Res. Procedia
,
14
, pp.
4247
4256
.10.1016/j.trpro.2016.05.396
53.
Mistree
,
F.
,
Smith
,
W. F.
,
Bras
,
B. A.
,
Allen
,
J. K.
, and
Muster
,
D.
,
1990
, “
Decision-Based Design: A Contemporary Paradigm for Ship Design
,”
Trans., Soc. Nav. Archit. Mar. Eng.
,
98
, pp.
565
597
.
54.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H.
, and
Mistree
,
F.
,
2006
, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
832
843
.10.1115/1.2202880
55.
Nellippallil
,
A. B.
,
Mohan
,
P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
Robust Concept Exploration of Materials, Products and Associated Manufacturing Processes
,”
ASME
Paper No. DETC2018-85913.10.1115/DETC2018-85913
56.
Choi
,
H.-J.
,
Austin
,
R.
,
Allen
,
J. K.
,
McDowell
,
D. L.
,
Mistree
,
F.
, and
Benson
,
D. J.
,
2005
, “
An Approach for Robust Design of Reactive Power Metal Mixtures Based on Non-Deterministic Micro-Scale Shock Simulation
,”
J. Comput.-Aided Mater. Des.
,
12
(
1
), pp.
57
85
.10.1007/s10820-005-1056-1
57.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B. A.
,
1993
, “
The Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,”
Structural Optimization: Status and Promise
,
Kamat
,
M. P.
, ed.,
AIAA
,
Washington, DC
, pp.
247
286
.
58.
Nellippallil
,
A. B.
,
Rangaraj
,
V.
,
Gautham
,
B.
,
Singh
,
A. K.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
An Inverse, Decision-Based Design Method for Integrated Design Exploration of Materials, Products, and Manufacturing Processes
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111403
.10.1115/1.4041050
59.
Nellippallil
,
A. B.
,
Mohan
,
P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2020
, “
An Inverse, Decision-Based Design Method for Robust Concept Exploration
,”
ASME J. Mech. Des.
,
142
(
8
), pp.
1
40
.10.1115/1.4045877
60.
Chen
,
W.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
1997
, “
A Robust Concept Exploration Method for Enhancing Productivity in Concurrent Systems Design
,”
Concurrent Eng.
,
5
(
3
), pp.
203
217
.10.1177/1063293X9700500302
61.
Simpson
,
T. W.
,
Poplinski
,
J.
,
Koch
,
P. N.
, and
Allen
,
J. K.
,
2001
, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comp.
,
17
(
2
), pp.
129
150
.10.1007/PL00007198
62.
Mistree
,
F.
,
Hughes
,
O. F.
, and
Bras
,
B.
,
1993
, “
Compromise Decision Support Problem and the Adaptive Linear Programming Algorithm
,”
Prog. Astronaut. Aeronaut.
,
150
, pp.
251
251
.https://doi.org/10.2514/5.9781600866234.0251.0290
63.
Nellippallil
,
A. B.
,
Allen
,
J. K.
,
Mistree
,
F.
,
Vignesh
,
R.
,
Gautham
,
B. P.
, and
Singh
,
A. K.
,
2017
, “
A Goal-Oriented, Inverse Decision-Based Design Method to Achieve the Vertical and Horizontal Integration of Models in a Hot-Rod Rolling Process Chain
,”
ASME
Paper No. DETC2017-67570.10.1115/DETC2017-67570
64.
Nellippallil
,
A. B.
,
Mohan
,
P.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2019
, “
Inverse Thermo-Mechanical Processing (ITMP) Design of a Steel Rod During Hot Rolling Process
,”
ASME
Paper No. DETC2019-97390.10.1115/DETC2019-97390
65.
Fonville
,
T. F.
,
Nellippallil
,
A. B.
,
Horstemeyer
,
M. F.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2019
, “
A Goal-Oriented, Inverse Decision-Based Method for an American Football Helmet
,”
ASME
Paper No. DETC2019-97388.10.1115/DETC2019-97388
66.
McDowell
,
D. L.
,
Panchal
,
J.
,
Choi
,
H.-J.
,
Seepersad
,
C.
,
Allen
,
J.
, and
Mistree
,
F.
,
2009
,
Integrated Design of Multiscale, Multifunctional Materials and Products
,
Butterworth-Heinemann
, Burlington, MA.
67.
Zaouk
,
A.
,
Marzougui
,
D.
, and
Bedewi
,
N.
,
2000
, “
Development of a Detailed Vehicle Finite Element Model Part I: Methodology
,”
Int. J. Crashworthiness
,
5
(
1
), pp.
25
36
.10.1533/cras.2000.0121
68.
Zaouk
,
A.
,
Marzougui
,
D.
, and
Kan
,
C.-D.
,
2000
, “
Development of a Detailed Vehicle Finite Element Model Part II: Material Characterization and Component Testing
,”
Int. J. Crashworthiness
,
5
(
1
), pp.
37
50
.10.1533/cras.2000.0122
69.
Horstemeyer
,
M.
,
Ren
,
X.
,
Fang
,
H.
,
Acar
,
E.
, and
Wang
,
P.
,
2009
, “
A Comparative Study of Design Optimisation Methodologies for Side-Impact Crashworthiness, Using Injury-Based Versus Energy-Based Criterion
,”
Int. J. Crashworthiness
,
14
(
2
), pp.
125
138
.10.1080/13588260802539489
70.
Fang
,
H.
,
Rais-Rohani
,
M.
,
Liu
,
Z.
, and
Horstemeyer
,
M.
,
2005
, “
A Comparative Study of Metamodeling Methods for Multiobjective Crashworthiness Optimization
,”
Comput. Struct.
,
83
(
25–26
), pp.
2121
2136
.10.1016/j.compstruc.2005.02.025
71.
Kahane
,
C. J.
,
1999
, “
Evaluation of Fmvss 214-Side Impact Protection: Dynamic Performance Requirement; Phase 1: Correlation of Tti (D) With Fatality Risk in Actual Side Impact Collisions of Model Year 1981–1993 Passenger Cars; Plan for Phase 2: Effect of Fmvss 214 and Correlation of Tti (D) With Actual Fatality Risk in Model Year 1992–2000 Passenger Cars
,” National Highway Traffic Safety Administration.
72.
Berthelson
,
P.
,
Ghassemi
,
P.
,
Wood
,
J.
,
Stubblefield
,
G.
,
Al-Graitti
,
A.
,
Jones
,
M.
,
Horstemeyer
,
M. F.
,
Chowdhury
,
S.
, and
Prabhu
,
R.
,
2021
, “
A Finite Element–Guided Mathematical Surrogate Modeling Approach for Assessing Occupant Injury Trends Across Variations in Simplified Vehicular Impact Conditions
,”
Medical Biol. Eng. Comput.
,
59
(
5
), pp.
1065
1079
.10.1007/s11517-021-02349-3
73.
Berthelson
,
P. R.
,
2019
, “
A Coupled Finite Element-Mathematical Surrogate Modeling Approach to Assess Occupant Head and Neck Injury Risk Due to Vehicular Impacts
,” Master of Science,
Mississippi State University
, Starkville, MS.
74.
Fac
,
V.
,
2010
, “
SURROGATES Toolbox User's Guide, Version 2.1
”.
75.
Miller
,
S. W.
,
Yukish
,
M. A.
, and
Simpson
,
T. W.
,
2018
, “
Design as a Sequential Decision Process
,”
Struct. Multidiscip. Optim.
,
57
(
1
), pp.
305
324
.10.1007/s00158-017-1756-7
76.
Puttick
,
K.
,
1959
, “
Ductile Fracture in Metals
,”
Philos. Magazine
,
4
(
44
), pp.
964
969
.10.1080/14786435908238272
77.
Rabotnov
,
Y. N.
, “
Paper 68: On the Equation of State of Creep
,”
Proceedings of the Institution of Mechanical Engineers
, Conference Proceedings,
SAGE Publications Sage UK
,
London, UK
, p.
2-117–112-122
.10.1243/PIME_CONF_1963_178_030_02
78.
McClintock
,
F. A.
,
1968
, “
A criterion for ductile fracture by the growth of holes
.” J. Appl. Mech., 35(2), pp.
363
371
.
79.
Rice
,
J. R.
, and
Tracey
,
D. M.
,
1969
, “
On the Ductile Enlargement of Voids in Triaxial Stress Fields∗
,”
J. Mech. Phys. Solids
,
17
(
3
), pp.
201
217
.10.1016/0022-5096(69)90033-7
80.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media,
” J. Eng. Mater. Technol., 99(1), pp.
2
15
.
81.
Raj
,
R.
, and
Ashby
,
M.
,
1975
, “
Intergranular Fracture at Elevated Temperature
,”
Acta Metall.
,
23
(
6
), pp.
653
666
.10.1016/0001-6160(75)90047-4
82.
Gangulee
,
A.
, and
Gurland
,
J.
,
1967
, “
On the Fracture of Silicon Particles in Aluminum- Silicon Alloys
,”
AIME Met. Soc. Trans.
,
239
(
2
), pp.
269
272
.
83.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metallurgica
,
32
(
1
), pp.
157
169
.10.1016/0001-6160(84)90213-X
84.
Horstemeyer
,
M. F.
, and
Gokhale
,
A. M.
,
1999
, “
A Void–Crack Nucleation Model for Ductile Metals
,”
Int. J. Solids Struct.
,
36
(
33
), pp.
5029
5055
.10.1016/S0020-7683(98)00239-X
You do not currently have access to this content.