Abstract

This contribution proposes a strategy for performing fuzzy analysis of linear static systems applying α-level optimization. In order to decrease numerical costs, full system analyses are replaced by a reduced order model that projects the equilibrium equations to a small-dimensional space. The basis associated with the reduced order model is constructed by means of a single analysis of the system plus a sensitivity analysis. This reduced basis is enriched as the α-level optimization strategy progresses in order to protect the quality of the approximations provided by the reduced order model. A numerical example shows that with the proposed strategy, it is possible to produce an accurate estimate of the membership function of the response of the system with a limited number of full system analyses.

References

1.
Bathe
,
K.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Upper Saddle River, NJ
.
2.
Möller
,
B.
, and
Beer
,
M.
,
2008
, “
Engineering Computation Under Uncertainty—Capabilities of Non-Traditional Models
,”
Comput. Struct.
,
86
(
10
), pp.
1024
1041
.10.1016/j.compstruc.2007.05.041
3.
Moens
,
D.
, and
Vandepitte
,
D.
,
2005
, “
A Survey of Non-Probabilistic Uncertainty Treatment in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12–16
), pp.
1527
1555
.10.1016/j.cma.2004.03.019
4.
Muhanna
,
R.
, and
Mullen
,
R.
,
2001
, “
Uncertainty in Mechanics Problems—Interval-Based Approach
,”
J. Eng. Mech.
,
127
(
6
), pp.
557
566
.10.1061/(ASCE)0733-9399(2001)127:6(557)
5.
Muscolino
,
G.
, and
Sofi
,
A.
,
2012
, “
Stochastic Analysis of Structures With Uncertain-but-Bounded Parameters Via Improved Interval Analysis
,”
Probab. Eng. Mech.
,
28
, pp.
152
163
.10.1016/j.probengmech.2011.08.011
6.
Sofi
,
A.
,
Romeo
,
E.
,
Barrera
,
O.
, and
Cocks
,
A.
,
2019
, “
An Interval Finite Element Method for the Analysis of Structures With Spatially Varying Uncertainties
,”
Adv. Eng. Software
,
128
, pp.
1
19
.10.1016/j.advengsoft.2018.11.001
7.
Faes
,
M.
, and
Moens
,
D.
,
2019
, “
Multivariate Dependent Interval Finite Element Analysis Via Convex Hull Pair Constructions and the Extended Transformation Method
,”
Comput. Methods Appl. Mech. Eng.
,
347
, pp.
85
102
.10.1016/j.cma.2018.12.021
8.
Beck
,
A.
,
Gomes
,
W.
, and
Bazan
,
F.
,
2012
, “
On the Robustness of Structural Risk Optimization With Respect to Epistemic Uncertainties
,”
Int. J. Uncertainty Quantif.
,
2
(
1
), pp.
1
20
.10.1615/Int.J.UncertaintyQuantification.v2.i1.20
9.
Moens
,
D.
, and
Hanss
,
M.
,
2011
, “
Non-Probabilistic Finite Element Analysis for Parametric Uncertainty Treatment in Applied Mechanics: Recent Advances
,”
Finite Elem. Anal. Des.
,
47
(
1
), pp.
4
16
.10.1016/j.finel.2010.07.010
10.
Degrauwe
,
D.
,
Lombaert
,
G.
, and
De Roeck
,
G.
,
2010
, “
Improving Interval Analysis in Finite Element Calculations by Means of Affine Arithmetic
,”
Comput. Struct.
,
88
(
3–4
), pp.
247
254
.10.1016/j.compstruc.2009.11.003
11.
Muhanna
,
R.
,
Zhang
,
H.
, and
Mullen
,
R.
,
2007
, “
Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics
,”
Reliable Comput.
,
13
(
2
), pp.
173
194
.10.1007/s11155-006-9024-3
12.
Qiu
,
Z.
, and
Elishakoff
,
I.
,
1998
, “
Antioptimization of Structures With Large Uncertain-but-Non-Random Parameters Via Interval Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
152
(
3–4
), pp.
361
372
.10.1016/S0045-7825(96)01211-X
13.
Manson
,
G.
,
2005
, “
Calculating Frequency Response Functions for UncertainSystems Using Complex Affine Analysis
,”
J. Sound Vib.
,
288
(
3
), pp.
487
521
.10.1016/j.jsv.2005.07.004
14.
Adhikari
,
S.
,
Chowdhury
,
R.
, and
Friswell
,
M.
,
2011
, “
High Dimensional Model Representation Method for Fuzzy Structural Dynamics
,”
J. Sound Vib.
,
330
(
7
), pp.
1516
1529
.10.1016/j.jsv.2010.10.010
15.
Beer
,
M.
,
2004
, “
Uncertain Structural Design Based on Nonlinear Fuzzy Analysis
,”
J. Appl. Math. Mech.
,
84
(
10–11
), pp.
740
753
.10.1002/zamm.200410154
16.
Jensen
,
H.
, and
Sepulveda
,
A.
,
2000
, “
Use of Approximation Concepts in Fuzzy Design Problems
,”
Adv. Eng. Software
,
31
(
4
), pp.
263
273
.10.1016/S0965-9978(99)00051-4
17.
Tangaramvong
,
S.
,
Wu
,
D.
,
Gao
,
W.
, and
Tin-Lo
,
F.
,
2015
, “
Response Bounds of Elastic Structures in the Presence of Interval Uncertainties
,”
J. Struct. Eng.
,
141
(
12
), p.
04015046
.10.1061/(ASCE)ST.1943-541X.0001297
18.
Beer
,
M.
,
Ferson
,
S.
, and
Kreinovich
,
V.
,
2013
, “
Imprecise Probabilities in Engineering Analyses
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
4
29
.10.1016/j.ymssp.2013.01.024
19.
McWilliam
,
S.
,
2001
, “
Anti-Optimisation of Uncertain Structures Using Interval Analysis
,”
Comput. Struct.
,
79
(
4
), pp.
421
430
.10.1016/S0045-7949(00)00143-7
20.
Valdebenito
,
M.
,
Pérez
,
C.
,
Jensen
,
H.
, and
Beer
,
M.
,
2016
, “
Approximate Fuzzy Analysis of Linear Structural Systems Applying Intervening Variables
,”
Comput. Struct.
,
162
(
162
), pp.
116
129
.10.1016/j.compstruc.2015.08.020
21.
Giannini
,
O.
, and
Hanss
,
M.
,
2008
, “
The Component Mode Transformation Method: A Fast Implementation of Fuzzy Arithmetic for Uncertainty Management in Structural Dynamics
,”
J. Sound Vib.
,
311
(
3–5
), pp.
1340
1357
.10.1016/j.jsv.2007.10.029
22.
Beer
,
M.
, and
Liebscher
,
M.
,
2008
, “
Designing Robust StructuresA Nonlinear Simulation Based Approach
,”
Comput. Struct.
,
86
(
10
), pp.
1102
1122
.10.1016/j.compstruc.2007.05.037
23.
Freitag
,
S.
,
Cao
,
B.
,
Ninić
,
J.
, and
Meschke
,
G.
,
2018
, “
Recurrent Neural Networks and Proper Orthogonal Decomposition With Interval Data for Real-Time Predictions of Mechanised Tunnelling Processes
,”
Comput. Struct.
,
207
, pp.
258
273
.10.1016/j.compstruc.2017.03.020
24.
Graf
,
W.
,
Freitag
,
S.
,
Sickert
,
J.-U.
, and
Kaliske
,
M.
,
2012
, “
Structural Analysis With Fuzzy Data and Neural Network Based Material Description
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
27
(
9
), pp.
640
654
.10.1111/j.1467-8667.2012.00779.x
25.
Mäck
,
M.
, and
Hanss
,
M.
,
2019
, “
Efficient Possibilistic Uncertainty Analysis of a Car Crash Scenario Using a Multifidelity Approach
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B Mech. Eng.
,
5
(
4
), p.
041015
.10.1115/1.4044243
26.
Wu
,
D.
,
Gao
,
W.
,
Tangaramvong
,
S.
, and
Tin-Loi
,
F.
,
2014
, “
Robust Stability Analysis of Structures With Uncertain Parameters Using Mathematical Programming Approach
,”
Int. J. Numer. Methods Eng.
,
100
(
10
), pp.
720
745
.10.1002/nme.4758
27.
Chen
,
P.
, and
Quarteroni
,
A.
,
2013
, “
Accurate and Efficient Evaluation of Failure Probability for Partial Different Equations With Random Input Data
,”
Comput. Methods Appl. Mech. Eng.
,
267
, pp.
233
260
.10.1016/j.cma.2013.08.016
28.
González
,
I.
,
Valdebenito
,
M.
,
Correa
,
J.
, and
Jensen
,
H.
,
2019
, “
Calculation of Second Order Statistics of Uncertain Linear Systems Applying Reduced Order Models
,”
Reliab. Eng. Syst. Saf.
,
190
, p.
106514
.10.1016/j.ress.2019.106514
29.
Gogu
,
C.
,
Chaudhuri
,
A.
, and
Bes
,
C.
,
2016
, “
How Adaptively Constructed Reduced Order Models Can Benefit Sampling-Based Methods for Reliability Analyses
,”
Int. J. Reliab., Qual. Saf. Eng.
,
23
(
5
), p.
1650019
.10.1142/S0218539316500194
30.
Falsone
,
G.
, and
Impollonia
,
N.
,
2002
, “
A New Approach for the Stochastic Analysis of Finite Element Modelled Structures With Uncertain Parameters
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
44
), pp.
5067
5085
.10.1016/S0045-7825(02)00437-1
31.
Jensen
,
H.
,
Araya
,
V.
,
Muñoz
,
A.
, and
Valdebenito
,
M.
,
2017
, “
A Physical Domain-Based Substructuring as a Framework for Dynamic Modeling and Reanalysis of Systems
,”
Comput. Methods Appl. Mech. Eng.
,
326
, pp.
656
678
.10.1016/j.cma.2017.08.044
32.
Hanss
,
M.
,
2005
,
Applied Fuzzy Arithmetic
,
Springer
,
Berlin
.
33.
Boyaval
,
S.
,
Le Bris
,
C.
,
Maday
,
Y.
,
Nguyen
,
N.
, and
Patera
,
A.
,
2009
, “
A Reduced Basis Approach for Variational Problems With Stochastic Parameters: Application to Heat Conduction With Variable Robin Coefficient
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
41–44
), pp.
3187
3206
.10.1016/j.cma.2009.05.019
34.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.10.1090/qam/910462
35.
Gautschi
,
W.
,
2012
,
Numerical Analysis
, 2nd ed.,
Birkhäuser
,
Boston, MA
.
36.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN'95-International Conference on Neural Networks
, Perth, WA, Australia, Nov. 27–Dec. 1, pp.
1942
1948
.
37.
Hurtado
,
J.
,
Alvarez
,
D.
, and
Ramirez
,
J.
,
2012
, “
Fuzzy Structural Analysis Based on Fundamental Reliability Concepts
,”
Comput. Struct.
,
112–113
, pp.
183
192
.10.1016/j.compstruc.2012.08.004
38.
Oñate
,
E.
,
2013
,
Structural Analysis With the Finite Element Method. Linear Statics
(Beams, Plates and Shells), Vol.
2
,
Springer
Netherlands, Barcelona
.
39.
Haftka
,
R.
, and
Gürdal
,
Z.
,
1992
,
Elements of Structural Optimization
, 3rd ed.,
Kluwer
,
Dordrecht, The Netherlands
.
You do not currently have access to this content.