In this paper, interval fractional derivatives are presented. We consider uncertainty in both the order and the argument of the fractional operator. The approach proposed takes advantage of the property of Fourier and Laplace transforms with respect to the translation operator, in order to first define integral transform of interval functions. Subsequently, the main interval fractional integrals and derivatives, such as the Riemann–Liouville, Caputo, and Riesz, are defined based on their properties with respect to integral transforms. Moreover, uncertain-but-bounded linear fractional dynamical systems, relevant in modeling fractional viscoelasticity, excited by zero-mean stationary Gaussian forces are considered. Within the interval analysis framework, either exact or approximate bounds of the variance of the stationary response are proposed, in case of interval stiffness or interval fractional damping, respectively.

References

1.
Pinnola
,
F.
,
2016
, “
Statistical Correlation of Fractional Oscillator Response by Complex Spectral Moments and State Variable Expansion
,”
Commun. Nonlinear Sci. Numer. Simul.
,
39
, pp.
343
359
.
2.
Bonilla
,
B.
,
Rivero
,
M.
, and
Trujillo
,
J. J.
,
2007
,
Linear Differential Equations of Fractional Order
,
Springer
,
Dordrecht, The Netherlands
, pp.
77
91
.
3.
Cottone
,
G.
, and
Di Paola
,
M.
,
2010
, “
A New Representation of Power Spectral Density and Correlation Function by Means of Fractional Spectral Moments
,”
Probab. Eng. Mech.
,
25
(
3
), pp.
348
353
.
4.
Cottone
,
G.
,
Di Paola
,
M.
, and
Santoro
,
R.
,
2010
, “
A Novel Exact Representation of Stationary Colored Gaussian Processes (Fractional Differential Approach)
,”
J. Phys. A: Math. Theor.
,
43
(
8
), p.
085002
.
5.
Cottone
,
G.
, and
Di Paola
,
M.
,
2011
, “
Fractional Spectral Moments for Digital Simulation of Multivariate Wind Velocity Fields
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
6–7
), pp.
741
747
.
6.
Moore
,
R. E.
,
1966
,
Interval Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
7.
Alefeld
,
G.
, and
Herzberger
,
J.
,
1983
,
Introduction to Interval Computations
,
Academic Press
,
New York
.
8.
Neumaier
,
A.
,
1990
,
Interval Methods for Systems of Equations
,
Cambridge University Press
,
Cambridge, MA
.
9.
Muhanna
,
R. L.
, and
Mullen
,
R. L.
,
2001
, “
Uncertainty in Mechanics Problems-Interval-Based Approach
,”
ASCE J. Eng. Mech.
,
127
(
6
), pp.
557
566
.
10.
Moens
,
D.
, and
Vandepitte
,
D.
,
2005
, “
A Survey of Non-Probabilistic Uncertainty Treatment in Finite Element Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
12–16
), pp.
1527
1555
.
11.
Hansen
,
E. R.
,
1975
, “A Generalized Interval Arithmetic,”
Interval Mathematics
(Lecture Notes on Computational Science), Vol.
29
,
K.
Nicket
, ed., Springer, Berlin, pp.
7
18
.
12.
Comba
,
J. L. D.
, and
Stolfi
,
J.
,
1993
, “
Affine Arithmetic and Its Applications to Computer Graphics
,”
Anais do VI Simposio Brasileiro de Computaao Grafica e Processamento de Imagens (SIBGRAPI’93)
, pp.
9
18
.
13.
Stolfi
,
J.
, and
De Figueiredo
,
L. H.
,
2003
, “
An Introduction to Affine Arithmetic
,”
TEMA Tend Math. Appl. Comput.
,
4
(
3
), pp.
297
312
.
14.
Nedialkov
,
N. S.
,
Kreinovich
,
V.
, and
Starks
,
S. A.
,
2004
, “
Interval Arithmetic, Affine Arithmetic, Taylor Series Methods: Why, What Next?
Numer. Algorithms
,
37
(
1
), pp.
325
336
.
15.
Muscolino
,
G.
, and
Sofi
,
A.
,
2012
, “
Stochastic Analysis of Structures With Uncertain-But-Bounded Parameters Via Improved Interval Analysis
,”
Probab. Eng. Mech.
,
28
, pp.
152
163
.
16.
Muscolino
,
G.
, and
Sofi
,
A.
,
2013
, “
Bounds for the Stationary Stochastic Response of Truss Structures With Uncertain-But-Bounded Parameters
,”
Mech. Syst. Signal Process.
,
37
(1–2), pp.
163
182
.
17.
Muscolino
,
G.
,
Santoro
,
R.
, and
Sofi
,
A.
,
2014
, “
Explicit Frequency Response Functions of Discretized Structures With Uncertain Parameters
,”
Comput. Struct.
,
133
, pp.
64
78
.
18.
Elishakoff
,
I.
, and
Miglis
,
Y.
,
2012
, “
Novel Parameterized Intervals May Lead to Sharp Bounds
,”
Mech. Res. Commun.
,
44
, pp.
1
8
.
19.
Elishakoff
,
I.
, and
Miglis
,
Y.
,
2012
, “
Overestimation-Free Computational Version of Interval Analysis
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
13
(
5
), pp.
319
328
.
20.
Santoro
,
R.
,
Elishakoff
,
I.
, and
Muscolino
,
G.
,
2015
, “
Optimization and Anti-Optimization Solution of Combined Parameterized and Improved Interval Analyses for Structures With Uncertainties
,”
Comput. Struct.
,
149
, pp.
31
42
.
21.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J.
,
2006
,
Theory and Application of Fractional Differential Equations
,
Elsevier
, Amsterdam, The Netherlands.
22.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach
,
New York
(in Russian).
23.
Di Paola
,
M.
,
Pinnola
,
F. P.
, and
Spanos
,
P. D.
,
2014
, “
Analysis of Multi-Degree-of-Freedom Systems With Fractional Derivative Elements of Rational Order
,”
International Conference on Fractional Differentiation and Its Applications
(
ICFDA
), Catania, Italy, June 23–25, pp.
1
6
.
You do not currently have access to this content.