Abstract

Data-driven wind turbine performance predictions, such as power and loads, are important for planning and operation. Current methods do not take site-specific conditions such as turbulence intensity and shear into account, which could result in errors of up to 10%. In this work, four different machine learning models (k-nearest neighbors regression, random forest regression, extreme gradient boosting regression and artificial neural networks (ANN)) are trained and tested, first on a simulation dataset and then on a real dataset. It is found that machine learning methods that take site-specific conditions into account can improve prediction accuracy by a factor of two to three, depending on the error indicator chosen. Similar results are observed for multi-output ANNs for simulated in- and out-of-plane rotor blade tip deflection and root loads. Future work focuses on understanding transferability of results between different turbines within a wind farm and between different wind turbine types.

References

1.
IEC International Electrotechnical Commission
,
2017
, “Wind Energy Generation Systems—Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines,”
IEC
, Geneva, Switzerland.
2.
Antoniou
,
I.
,
Pedersen
,
S. M.
, and
Enevoldsen
,
P. B.
,
2009
, “
Wind Shear and Uncertainties in Power Curve Measurement and Wind Resources
,”
Wind Eng.
, (
33
(
5
), pp.
449
468
.10.1260/030952409790291208
3.
Hedevang
,
E.
,
2014
, “
Wind Turbine Power Curves Incorporating Turbulence Intensity
,”
Wind Energy
, (
17
(
2
), pp.
173
195
.10.1002/we.1566
4.
Vanderwende
,
B. J.
, and
Lundquist
,
J. K.
,
2012
, “
The Modification of Wind Turbine Performance by Statistically Distinct Atmospheric Regimes
,”
Environ. Res. Lett.
,
7
(
3
), p.
034035
.10.1088/1748-9326/7/3/034035
5.
Wagner
,
R.
,
Courtney
,
M.
,
Gottschall
,
J.
, and
Lindelow-Marsden
,
P.
,
2011
, “
Accounting for the Speed Shear in Wind Turbine Power Performance Measurement
,”
Wind Energy
, (
14
(
8
), pp.
993
1004
.10.1002/we.509
6.
Wharton
,
S.
, and
Lundquist
,
J. K.
,
2012
, “
Atmospheric Stability Affects Wind Turbine Power Collection
,”
Environ. Res. Lett.
,
7
(
1
), p.
014005
.10.1088/1748-9326/7/1/014005
7.
Clifton
,
A.
,
Kilcher
,
L.
,
Lundquist
,
J. K.
, and
Fleming
,
P.
,
2013
, “
Using Machine Learning to Predict Wind Turbine Power Output
,”
Environ. Res. Lett.
,
8
(
2
), p.
024009
.10.1088/1748-9326/8/2/024009
8.
IEC International Electrotechnical Commission
,
2015
, “Wind Energy Generation Systems - Part 13: Measurement of Mechanical Loads,”
IEC
, Geneva, Switzerland.
9.
Taslimi-Renani
,
E.
,
Modiri-Delshad
,
M.
,
Elias
,
M. F. M.
, and
Rahim
,
N. A.
,
2016
, “
Development of an Enhanced Parametric Model for Wind Turbine Power Curve
,”
Appl. Energy
,
177
, pp.
544
552
.10.1016/j.apenergy.2016.05.124
10.
Marvuglia
,
A.
, and
Messineo
,
A.
,
2012
, “
Monitoring of Wind Farms' Power Curves Using Machine Learning Techniques
,”
Appl. Energy
,
98
, pp.
574
583
.10.1016/j.apenergy.2012.04.037
11.
Kusiak
,
A.
,
Zheng
,
H.
, and
Song
,
Z.
,
2009
, “
Models for Monitoring Wind Farm Power
,”
Renewable Energy
,
34
(
3
), pp.
583
590
.10.1016/j.renene.2008.05.032
12.
Manobel
,
B.
,
Sehnke
,
F.
,
Lazzús
,
J. A.
,
Salfate
,
I.
,
Felder
,
M.
, and
Montecinos
,
S.
,
2018
, “
Wind Turbine Power Curve Modeling Based on Gaussian Processes and Artificial Neural Networks
,”
Renewable Energy
,
125
, pp.
1015
1020
.10.1016/j.renene.2018.02.081
13.
Toft
,
H. S.
,
Svenningsen
,
L.
,
Moser
,
W.
,
Sorensen
,
J. D.
, and
Thogersen
,
M. L.
,
2016
, “
Assessment of Wind Turbine Structural Integrity Using Response Surface Methodology
,”
Eng. Struct.
,
106
, pp.
471
483
.10.1016/j.engstruct.2015.10.043
14.
Murcia
,
J. P.
,
Réthoré
,
P. E.
,
Dimitrov
,
N.
,
Natarajan
,
A.
,
Sorensen
,
J. D.
,
Graf
,
P.
, and
Kim
,
T.
,
2018
, “
Uncertainty Propagation Through an Aeroelastic Wind Turbine Model Using Polynomial Surrogates
,”
Renewable Energy
,
119
, pp.
910
922
.10.1016/j.renene.2017.07.070
15.
Dimitrov
,
N.
,
Kelly
,
M.
,
Vignaroli
,
A.
, and
Berg
,
J.
,
2018
, “
From Wind to Loads: Wind Turbine Site-Specic Load Estimation Using Databases With High-Delity Load Simulations
,”
Wind Energy Sci.
,
3
(
2
), pp.
767
790
.10.5194/wes-3-767-2018
16.
Schröder
,
L.
,
Krasimirov Dimitrov
,
N.
,
Verelst
,
D. R.
, and
Sørensen
,
J. A.
,
2018
, “
Wind Turbine Site-Specific Load Estimation Using Artificial Neural Networks Calibrated by Means of High-Fidelity Load Simulations
,”
J. Phys. Conf. Ser.
,
1037
, p.
062027
.10.1088/1742-6596/1037/6/062027
17.
Barber
,
S.
, and
Nordborg
,
H.
,
2020
, “
Improving Site-Dependent Power Curve Prediction Accuracy Using Regression Trees
,”
J. Phys. Conf. Ser.
,
1618
(
6
), p.
062003
.10.1088/1742-6596/1618/6/062003
18.
Sakagami
,
Y.
,
Pedro
,
A.
,
Santos
,
A.
,
Haas
,
R.
,
Passos
,
J.
, and
Taves
,
F.
,
2015
, “
Effects of Turbulence, Wind Shear, Wind Veer, and Atmospheric Stability on Power Performance: A Case Study in Brazil
,”
EWEA Annual Event
, Paris, France, Nov. 17–20.https://www.ewea.org/annual2015/conference/submit-an-abstract/pdf/334232987750.pdf
19.
Géron
,
A.
,
2019
,
Hands-on Machine Learning With Scikit-Learn, Keras & TensorFlow
, 2nd ed,
O'Reilly Media
, Delaware.
20.
Alman
,
N.
,
1992
, “
An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression
,”
Am. Statis.
,
46
(
3
), pp.
175
185
.10.1080/00031305.1992.10475879
21.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
Xgboost: A Scalable Tree Boosting System
,”
Association for Computing Machinery
, New York.10.1145/2939672.2939785
22.
Zell
,
A.
,
1994
,
Simulation Neuronaler Netze [Simulation of Neural Networks] (in German)
, 1st ed.,
De Gruyter Oldenbourg
, Munich, Germany.
23.
IEC International Electrotechnical Commission
,
2019
, “Wind Energy Generation Systems—Part 1: Design Requirements,”
IEC
, Geneva, Switzerland.
You do not currently have access to this content.