Abstract

In recent years, machine learning (ML) techniques have gained popularity in structural health monitoring (SHM). These have been particularly used for damage detection in a wide range of engineering applications such as wind turbine blades. The outcomes of previous research studies in this area have demonstrated the capabilities of ML for robust damage detection. However, the primary challenge facing ML in SHM is the lack of interpretability of the prediction models hindering the broader implementation of these techniques. For this purpose, this study integrates the novel Shapley Additive exPlanations (SHAP) method into a ML-based damage detection process as a tool for introducing interpretability and, thus, build evidence for reliable decision-making in SHM applications. The SHAP method is based on coalitional game theory and adds global and local interpretability to ML-based models by computing the marginal contribution of each feature. The contribution is used to understand the nature of damage indices (DIs). The applicability of the SHAP method is first demonstrated on a simple lumped mass-spring-damper system with simulated temperature variabilities. Later, the SHAP method has been evaluated on data from an in-operation V27 wind turbine with artificially introduced damage in one of its blades. The results show the relationship between the environmental and operational variabilities (EOVs) and their direct influence on the damage indices. This ultimately helps to understand the difference between false positives caused by EOVs and true positives resulting from damage in the structure.

References

1.
Farrar
,
C. R.
, and
Worden
,
K.
,
2010
, “
An Introduction to Structural Health Monitoring
,”
New Trends in Vibration Based Structural Health Monitoring
(CISM Courses and Lectures, Vol. 520), A. Deraemaeker and K. Worden, eds., Springer, Vienna, Austia.10.1007/978-3-7091-0399-9_1
2.
Worden
,
K.
,
Manson
,
G.
, and
Fieller
,
N. R.
,
2000
, “
Damage Detection Using Outlier Analysis
,”
J. Sound Vibration
,
229
(
3
), pp.
647
667
.10.1006/jsvi.1999.2514
3.
Sohn
,
H.
,
Dzwonczyk
,
M.
,
Straser
,
E. G.
,
Law
,
K. H.
,
Meng
,
T. H.-Y.
, and
Kiremidjian
,
A. S.
,
1998
, “
Adaptive Modeling of Environmental Effects in Modal Parameters for Damage Detection in Civil Structures
,”
International Society for Optics and Photonics, Smart Structures and Materials 1998: Smart Systems for Bridges, Structures, and Highways
, San Diego, CA, Mar., Vol.
3325
, pp.
127
138
.
4.
Kullaa
,
J.
,
2011
, “
Distinguishing Between Sensor Fault, Structural Damage, and Environmental or Operational Effects in Structural Health Monitoring
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
2976
2989
.10.1016/j.ymssp.2011.05.017
5.
Peeters
,
B.
, and
De Roeck
,
G.
,
2001
, “
One-Year Monitoring of the z24-Bridge: Environmental Effects Versus Damage Events
,”
Earthquake Eng. Struct. Dyn.
,
30
(
2
), pp.
149
171
.10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z
6.
Peeters
,
B.
,
Maeck
,
J.
, and
De Roeck
,
G.
,
2001
, “
Vibration-Based Damage Detection in Civil Engineering: Excitation Sources and Temperature Effects
,”
Smart Mater. Struct.
,
10
(
3
), pp.
518
527
.10.1088/0964-1726/10/3/314
7.
Oliveira
,
G.
,
Magalhães
,
F.
,
Cunha
,
Á.
, and
Caetano
,
E.
,
2018
, “
Vibration-Based Damage Detection in a Wind Turbine Using 1 Year of Data
,”
Struct. Control Health Monit.
,
25
(
11
), p.
e2238
.10.1002/stc.2238
8.
Figueiredo
,
E.
,
Park
,
G.
,
Farrar
,
C. R.
,
Worden
,
K.
, and
Figueiras
,
J.
,
2011
, “
Machine Learning Algorithms for Damage Detection Under Operational and Environmental Variability
,”
Struct. Health Monit.
,
10
(
6
), pp.
559
572
.10.1177/1475921710388971
9.
Azimi
,
M.
,
Eslamlou
,
A. D.
, and
Pekcan
,
G.
,
2020
, “
Data-Driven Structural Health Monitoring and Damage Detection Through Deep Learning: State-of-the-Art Review
,”
Sens.
,
20
(
10
), p.
2778
.10.3390/s20102778
10.
Santos
,
A.
,
Figueiredo
,
E.
,
Silva
,
M.
,
Sales
,
C.
, and
Costa
,
J.
,
2016
, “
Machine Learning Algorithms for Damage Detection: Kernel-Based Approaches
,”
J. Sound Vib.
,
363
, pp.
584
599
.10.1016/j.jsv.2015.11.008
11.
Abdeljaber
,
O.
,
Avci
,
O.
,
Kiranyaz
,
S.
,
Gabbouj
,
M.
, and
Inman
,
D. J.
,
2017
, “
Real-Time Vibration-Based Structural Damage Detection Using One-Dimensional Convolutional Neural Networks
,”
J. Sound Vib.
,
388
, pp.
154
170
.10.1016/j.jsv.2016.10.043
12.
Zhang
,
D.
,
Qian
,
L.
,
Mao
,
B.
,
Huang
,
C.
,
Huang
,
B.
, and
Si
,
Y.
,
2018
, “
A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forests and Xgboost
,”
IEEE Access
,
6
, pp.
21020
21031
.10.1109/ACCESS.2018.2818678
13.
Solimine
,
J.
,
Niezrecki
,
C.
, and
Inalpolat
,
M.
,
2020
, “
An Experimental Investigation Into Passive Acoustic Damage Detection for Structural Health Monitoring of Wind Turbine Blades
,”
Struct. Health Monit.
,
19
(
6
), pp.
1711
1725
.10.1177/1475921719895588
14.
Mylonas
,
C.
,
Abdallah
,
I.
, and
Chatzi
,
E. N.
,
2020
, “
Deep Unsupervised Learning for Condition Monitoring and Prediction of High Dimensional Data With Application on Windfarm Scada Data
,”
Model Validation and Uncertainty Quantification
, Vol.
3
,
R.
Barthorpe
, ed.,
Springer International Publishing
, pp.
189
196
.
15.
Vilone
,
G.
, and
Longo
,
L.
,
2020
, “
Explainable Artificial Intelligence: A Systematic Review
,” arXiv preprint arXiv:2006.00093.
16.
Lundberg
,
S. M.
, and
Lee
,
S.-I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems
, Long Beach, CA, Dec. 4–9, pp.
4768
4777
.
17.
Štrumbelj
,
E.
, and
Kononenko
,
I.
,
2014
, “
Explaining Prediction Models and Individual Predictions With Feature Contributions
,”
Knowl. Inform. Systems
,
41
(
3
), pp.
647
665
.10.1007/s10115-013-0679-x
18.
Roth
,
A. E.
,
1988
,
The Shapley Value: Essays in Honor of Lloyd S. Shapley
,
Cambridge University Press
, Cambridge, UK.
19.
Lundberg
,
S. M.
,
Nair
,
B.
,
Vavilala
,
M. S.
,
Horibe
,
M.
,
Eisses
,
M. J.
,
Adams
,
T.
,
Liston
,
D. E.
,
Low
,
D. K.-W.
,
Newman
,
S.-F.
,
Kim
,
J.
, and
Lee
,
S.-I.
,
2018
, “
Explainable Machine-Learning Predictions for the Prevention of Hypoxaemia During Surgery
,”
Nat. Biomed. Eng.
,
2
(
10
), pp.
749
760
.10.1038/s41551-018-0304-0
20.
Bussmann
,
N.
,
Giudici
,
P.
,
Marinelli
,
D.
, and
Papenbrock
,
J.
,
2020
, “
Explainable ai in Fintech Risk Management
,”
Front. Artif. Intell.
,
3
, p.
26
.10.3389/frai.2020.00026
21.
Parsa
,
A. B.
,
Movahedi
,
A.
,
Taghipour
,
H.
,
Derrible
,
S.
, and
Mohammadian
,
A. K.
,
2020
, “
Toward Safer Highways, Application of Xgboost and Shap for Real-Time Accident Detection and Feature Analysis
,”
Accident Anal. Prev.
,
136
, p.
105405
.10.1016/j.aap.2019.105405
22.
Lim
,
S.
, and
Chi
,
S.
,
2019
, “
Xgboost Application on Bridge Management Systems for Proactive Damage Estimation
,”
Adv. Eng. Inf.
,
41
, p.
100922
.10.1016/j.aei.2019.100922
23.
Onchis
,
D. M.
, and
Gillich
,
G.-R.
,
2021
, “
Stable and Explainable Deep Learning Damage Prediction for Prismatic Cantilever Steel Beam
,”
Comput. Ind.
,
125
, p.
103359
.10.1016/j.compind.2020.103359
24.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
Xgboost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining
, San Francisco, CA, Aug. 13–17, pp.
785
794
.
25.
Movsessian
,
A.
,
Cava
,
D. G.
, and
Tcherniak
,
D.
,
2021
, “
An Artificial Neural Network Methodology for Damage Detection: Demonstration on an Operating Wind Turbine Blade
,”
Mech. Syst. Signal Process.
,
159
, p.
107766
.10.1016/j.ymssp.2021.107766
26.
Movsessian
,
A.
,
Garcia
,
D.
, and
Tcherniak
,
D.
,
2020
, “
Adaptive Feature Selection for Enhancing Blade Damage Diagnosis on an Operational Wind Turbine
,”
Proceedings of the 13th International Conference on Damage Assessment of Structures
,
Springer
, Singapore, Porto, July 9–10, pp.
594
605
.
27.
Tcherniak
,
D.
, and
Mølgaard
,
L. L.
,
2017
, “
Active Vibration-Based Structural Health Monitoring System for Wind Turbine Blade: Demonstration on an Operating Vestas v27 Wind Turbine
,”
Struct. Health Monit.
,
16
(
5
), pp.
536
550
.10.1177/1475921717722725
28.
Mahalanobis
,
P. C.
,
1936
,
On the Generalized Distance in Statistics
,
National Institute of Science of India
, Baranagar, India.
29.
Friedman
,
J. H.
,
2001
, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Stat.
,
29
(
5
), pp.
1189
1232
.
30.
Lundberg
,
S. M.
,
Erion
,
G.
,
Chen
,
H.
,
DeGrave
,
A.
,
Prutkin
,
J. M.
,
Nair
,
B.
,
Katz
,
R.
,
Himmelfarb
,
J.
,
Bansal
,
N.
, and
Lee
,
S.-I.
,
2020
, “
From Local Explanations to Global Understanding With Explainable ai for Trees
,”
Nat. Mach. Intell.
,
2
(
1
), pp.
56
5839
.10.1038/s42256-019-0138-9
31.
Movsessian
,
A.
,
Qadri
,
B. A.
,
Tcherniak
,
D.
,
Cava
,
D. G.
, and
Ulriksen
,
M. D.
,
2020
, “
Mitigation of Environmental Variabilities in Damage Detection: A Comparative Study of Two Semi-Supervised Approaches
,”
EURODYN 2020: XI International Conference on Structural Dynamics
, Athens, Greece, June 22–24, pp. 1281–1292.
You do not currently have access to this content.