Abstract

In this paper, a four-step safety integrity level (SIL) analysis is developed to analyze numerous components of the subsea control system based on the OREDA database. For this purpose, initially, a failure mode classification table is provided, aiming to identify the number of dangerous as well as the prevalent failure modes. Then, several parameters including component inventory, installation inventory, equipment units, failure events, and total time in service (per hour) are calculated. Also, failure rates are evaluated and the software checking is provided as the final step of the proposed framework. The results show that the dangerous failure modes occur in about 80 cases, and the leakage in the closed position is the failure mode occurring more than the other ones. Moreover, calculations indicate that the process isolation valve of the subsea X-mass tree has the largest values in all the referred parameters. Moreover, hydraulic coupling of the choke module and HC leak sensor are the two components with the highest value of failure rates.

References

1.
Zhang
,
J.
,
2018
, “
Contribution to Reliability and Availability Analysis of Novel Subsea Technologies-Methods and Approaches to Apply in the Early Design Phase
,” Ph.D. dissertation, Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology,
Norway
.
2.
Umofia
,
A. N.
,
2014
, “
Risk-Based Reliability Assessment of Subsea Control Module for Offshore Oil and Gas Production
,”
Ph.D. dissertation
,
Department of Offshore, Process and Energy Engineering
,
Cranfield University, UK
.https://dspace.lib.cranfield.ac.uk/handle/1826/9256#:~:text=A%20risk%20identification%20of%20the,failure%20modes%20for%20the%20SCM
3.
Ostebo
,
R.
,
Kallestad
,
O.
, and
Grytdal
,
I.
,
2001
, “
Subsea Reliability-Success Factors for Sustainable Deepwater Concept Development
,” Paper presented at the Offshore Technology Conference, Houston, TX, Apr. 30–May 3, Paper No.
OTC-13290-MS
.10.4043/13290-MS
4.
Jahanian
,
H.
,
2017
, “
Optimization, a Rational Approach to SIL Determination
,”
Process Saf. Environ. Prot.
,
109
, pp.
452
464
.10.1016/j.psep.2017.04.015
5.
Jahanian
,
H.
, and
Mahboob
,
Q.
,
2016
, “
SIL Determination as a Utility-Based Decision Process
,”
Process Saf. Environ. Prot.
,
102
, pp.
757
767
.10.1016/j.psep.2016.06.012
6.
King
,
A. G.
,
2014
, “
SIL Determination: Recognising and Handling High Demand Mode Scenarios
,”
Process Saf. Environ. Prot.
,
92
(
4
), pp.
324
328
.10.1016/j.psep.2014.01.002
7.
Wang
,
Y.
,
West
,
H. H.
, and
Mannan
,
M. S.
,
2004
, “
The Impact of Data Uncertainty in Determining Safety Integrity Level
,”
Process Saf. Environ. Prot.
,
82
(
6
), pp.
393
397
.10.1205/psep.82.6.393.53199
8.
Mkhida
,
A.
,
Thiriet
,
J. M.
, and
Aubry
,
J. F.
,
2014
, “
Integration of Intelligent Sensors in Safety Instrumented Systems (SIS)
,”
Process Saf. Environ. Prot.
,
92
(
2
), pp.
142
149
.10.1016/j.psep.2013.01.001
9.
Khan
,
F.
,
Rathnayaka
,
S.
, and
Ahmed
,
S.
,
2015
, “
Methods and Models in Process Safety and Risk Management: Past, Present and Future
,”
Process Safety Environ. Prot.
,
98
, pp.
116
147
.10.1016/j.psep.2015.07.005
10.
Crivellari
,
A.
,
Bonvicini
,
S.
,
Tugnoli
,
A.
, and
Cozzani
,
V.
,
2021
, “
Multi-Target Inherent Safety Indices for the Early Design of Offshore Oil&Gas Facilities
,”
Process Saf. Environ. Prot.
,
148
, pp.
256
272
.10.1016/j.psep.2020.10.010
11.
Bukowski
,
J. V.
, and
Goble
,
W. M.
,
2012
, “
Properly Assessing Mechanical Component Failure Rates
,”
Proceedings Annual Reliability and Maintainability Symposium
, Reno, NV, Jan. 23–26, pp.
1
7
.10.1109/RAMS.2012.6175499
12.
Gabriel
,
A.
,
Ozansoy
,
C.
, and
Shi
,
J.
,
2018
, “
Developments in SIL Determination and Calculation
,”
Reliab. Eng. Syst. Saf.
,
177
, pp.
148
161
.10.1016/j.ress.2018.04.028
13.
Sandtorv
,
H. A.
,
Hokstad
,
P.
, and
Thompson
,
D. W.
,
1996
, “
Practical Experience With a Data Collection Project: The OREDA Project
,”
Reliab. Eng. Syst. Saf.
,
51
(
2
), pp.
159
167
.10.1016/0951-8320(95)00113-1
14.
Kumar
,
A.
,
2016
, “
Prediction of Failure Rates for Subsea Equipment
,” Master's thesis,
Department of Production and Quality Engineering, Norwegian University of Science and Technology
,
Norway
.https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2414762/15840_FULLTEXT.pdf?sequence=1
15.
Harahap
,
V. A.
,
2019
, “
Recommendations to Improve the Quality and the Automation of the OREDA Data Process
,” Master's thesis,
Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology
,
Norway
.https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2620456
16.
Zhang
,
J.
,
Liu
,
Y.
,
Lundteigen
,
M.
, and
Bouillaut
,
L.
,
2016
, “
Using Bayesian Networks to Quantify the Reliability of a Subsea System in the Early Design
,”
Risk, Reliability and Safety: Innovating Theory and Practice: Proceedings of ESREL
, Glasgow, UK, Sept. 25–29, p.
404
.https://hal.archives-ouvertes.fr/hal-01524476/document
17.
Zhang
,
J.
,
Haskins
,
C.
,
Liu
,
Y.
, and
Lundteigen
,
M. A.
,
2018
, “
A Systems Engineering–Based Approach for Framing Reliability, Availability, and Maintainability: A Case Study for Subsea Design
,”
Syst. Eng.
,
21
(
6
), pp.
576
592
.10.1002/sys.21462
18.
Zhang
,
J.
,
Kim
,
H.
,
Liu
,
Y.
, and
Lundteigen
,
M. A.
,
2019
, “
Combining System-Theoretic Process Analysis and Availability Assessment: A Subsea Case Study
,”
Proc. Inst. Mech. Eng., Part O: J. Risk Reliab
.,
233
(
4
), pp.
520
536
.10.1177/1748006X18822224
19.
Subramanian
,
N.
, and
Zalewski
,
J.
,
2020
, “
Safety and Security Integrated SIL Evaluation Using the NFR Approach
,”
In Integrating Research and Practice in Software Engineering
,
Springer
,
Cham, Switzerland
, pp.
53
68
.10.1007/978-3-030-26574-8_5
20.
Piesik
,
E.
,
Śliwiński
,
M.
, and
Barnert
,
T.
,
2016
, “
Determining and Verifying the Safety Integrity Level of the Safety Instrumented Systems With the Uncertainty and Security Aspects
,”
Reliab. Eng. Syst. Saf.
,
152
, pp.
259
272
.10.1016/j.ress.2016.03.018
21.
Ifelebuegu
,
A. O.
,
Awotu-Ukiri
,
E. O.
,
Theophilus
,
S. C.
,
Arewa
,
A. O.
, and
Bassey
,
E.
,
2018
, “
The Application of Bayesian–Layer of Protection Analysis Method for Risk Assessment of Critical Subsea Gas Compression Systems
,”
Process Saf. Environ. Prot.
,
113
, pp.
305
318
.10.1016/j.psep.2017.10.019
22.
Chung
,
S.
,
Kim
,
S.
, and
Yang
,
Y.
,
2016
, “
Use of Hazardous Event Frequency to Evaluate Safety Integrity Level of Subsea Blowout Preventer
,”
Int. J. Nav. Arch. Ocean Eng.
,
8
(
3
), pp.
262
276
.10.1016/j.ijnaoe.2016.03.005
23.
Díaz-Hernández
,
A.
,
Pérez Medina
,
M. A. E.
, and
González
,
R. M.
,
2003
, “
Quantitative Determination of Safety Integrity Level on Offshore Metering and Custody Transfer Facility
,” International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, June 8–13, Paper No.
OMAE2003-37268
, Vol.
36827
, pp.
249
254
.10.1115/OMAE2003-37268
24.
Winter
,
T.
,
Glaser
,
M.
,
Bertsche
,
B.
,
Imle
,
S.
, and
Popp
,
J.
,
2020
, “
Analysis of an All-Electric Safety Subsea Actuation System Architecture
,” Annual Reliability and Maintainability Symposium (
RAMS
),
IEEE
, Palm Springs, CA, Jan. 27–30, p. 1–7.10.1109/RAMS48030.2020.9153641
25.
Islam
,
M.
,
2012
, “
Reliability of subsea equipment in Order to Verify Safety Integrity Level (SIL) in Presence of Uncertainty
,” Master's thesis,
University of Stavanger
,
Norway
.https://uis.brage.unit.no/uis-xmlui/handle/11250/181834
26.
Wang
,
L.
,
Wang
,
X.
,
Lizhang
,
H.
,
Jia
,
P.
,
Yun
,
F.
, and
Wang
,
H.
,
2019
, “
Design and Reliability Analysis of the Electrical Control System of the Subsea Control Module
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
233
(
6
), pp.
720
733
.10.1177/0959651818821199
27.
Wang
,
C.
,
Liu
,
Y.
,
Hou
,
W.
,
Wang
,
G.
, and
Zheng
,
Y.
,
2020
, “
Reliability and Availability Modeling of Subsea Xmas Tree System Using Dynamic Bayesian Network With Different Maintenance Methods
,”
J. Loss Prev. Process Ind.
,
64
, p.
104066
.10.1016/j.jlp.2020.104066
28.
Monteverdi
,
C.
,
Novello
,
M.
, and
Kristiansen
,
K.
,
2019
, “
A New All Electric Subsea Control System Development
,” Paper presented at the Offshore Technology Conference, Houston, TX, May 6–9, Paper No.
OTC-29356-MS
.10.4043/29356-MS
29.
Wang
,
X.
,
Jia
,
P.
,
Lizhang
,
H.
,
Wang
,
L.
,
Yun
,
F.
, and
Wang
,
H.
,
2019
, “
Reliability and Safety Modelling of the Electrical Control System of the Subsea Control Module Based on Markov and Multiple Beta Factor Model
,”
IEEE Access
,
7
, pp.
6194
6208
.10.1109/ACCESS.2018.2889104
30.
Amin
,
M. T.
,
Khan
,
F.
, and
Zuo
,
M. J.
,
2019
, “
A Bibliometric Analysis of Process System Failure and Reliability Literature
,”
Eng. Failure Anal.
,
106
, p.
104152
.10.1016/j.engfailanal.2019.104152
31.
Jahedul
,
I.
,
2012
, “
Reliability of Subsea Equipment in order to Verify Safety Integrity Level (SIL) in Presence of Uncertainty
,” Master's thesis,
Faculty of Science and Technology, University of Stavanger
,
Norway
.https://uis.brage.unit.no/uis-xmlui/handle/11250/181834
32.
ISO
,
2006
,
Petroleum, Petrochemical and Natural Gas Industries – Collection and Exchange and Maintenance Data for Equipment
, 2nd ed., Vol.
15
, p.
12
, Standard No. 142424.
33.
Kolios
,
A. J.
,
Umofia
,
A.
, and
Shafiee
,
M.
,
2017
, “
Failure Mode and Effects Analysis Using a fuzzy-TOPSIS Method: A Case Study of Subsea Control Module
,”
Int. J. Multicriteria Decis. Making
,
7
(
1
), pp.
29
53
.10.1504/IJMCDM.2017.085154
34.
Guan
,
Y.
,
Jianmei
,
L.
,
Menglan
,
D.
, and
Sidian
,
H.
,
2015
, “
Risk Analysis of Subsea x-Mas Tree Leakage
,”
Advances in Structural Engineering and Mechanics (ASEM15)
, South Korea, Aug. 25–29. https://www.semanticscholar.org/paper/Risk-analysis-of-subsea-x-mas-tree-leakage-Guan-Luo/d0bd440a3aa62251c9aa112203a972ac9d946a64
You do not currently have access to this content.