Abstract

The purpose of this work is to develop a computationally efficient model of viral spread that can be utilized to better understand the influences of stochastic factors on a large-scale system – such as the air traffic network. A particle-based model of passengers and seats aboard a single-cabin 737-800 is developed for use as a demonstration of the concept on tracking the propagation of a virus through the aircraft's passenger compartment over multiple flights. The model is sufficiently computationally efficient to be viable for Monte Carlo simulation to capture various stochastic effects, such as number of passengers, number of initially sick passengers, seating locations of passengers, and baseline health of each passenger. The computational tool is then exercised in demonstration for assessing risk mitigation of intervention strategies, such as passenger-driven cleaning of seating environments and elimination of middle seating.

References

1.
Lin
,
C.-H.
,
Horstman
,
R. H.
,
Ahlers
,
M. F.
,
Sedgwick
,
L. M.
,
2005
, “
Numerical Simulation of Airflow and Airborne Pathogen Transport in Aircraft Cabins-Part I: Numerical Simulation of the Flow Field
,”
ASHRAE Trans.
,
111
, pp.
755
763
.https://www.cdc.gov/niosh/nioshtic-2/20029894.html
2.
Lin
,
C.-H.
,
Horstman
,
R. H.
,
Ahlers
,
M. F.
,
Sedgwick
,
L. M.
,
2005
, “
Numerical Simulation of Airflow and Airborne Pathogen Transport in Aircraft Cabins-Part II: Numerical Simulation of Airborne Pathogen Transport
,”
ASHRAE Trans.
,
111
, pp.
764
768
.https://www.cdc.gov/niosh/nioshtic-2/20029896.html
3.
Chen
,
Q. “Yan”
,
McDevitt
,
J. J.
,
Gupta
,
J. K.
,
Jones
,
B. W.
,
Mazumdar
,
S.
,
Poussou
,
S. B.
, and
Spengler
,
J. D.
,
2012
, “
Infectious Disease Transmission in Airliner Cabins
,” National Air Transportation Center of Excellence for Research in the Intermodal Transport Environment (RITE) Airliner Cabin Environment Research Program Harvard School of Public Health; Kansas State University; and Purdue University, Report No. RITE-ACER-CoE-2012 01.
4.
Han
,
Z.
,
Sze To
,
G. N.
,
Fu
,
S. C.
,
Chao
,
C. Y.-H.
,
Weng
,
W.
, and
Huang
,
Q.
,
2014
, “
Effect of Human Movement on Airborne Disease Transmission in an Airplane Cabin: Study Using Numerical Modeling and Quantitative Risk Analysis
,”
BMC Infect. Dis.
,
14
(
1
), p.
434
10.1186/1471-2334-14-434
5.
Hertzberg
,
V. S.
,
Weiss
,
H.
,
Elon
,
L.
,
Si
,
W.
, and
Norris
,
S. L.
, and
the FlyHealthy Research Team,
2018
, “
Behaviors, Movements, and Transmission of Droplet-Mediated Respiratory Diseases During Transcontinental Airline Flights
,”
Proc. Natl. Acad. Sci.
,
115
(
14
), pp.
3623
3627
. 10.1073/pnas.1711611115
6.
Namilae
,
S.
,
Srinivasan
,
A.
,
Mubayi
,
A.
,
Scotch
,
M.
, and
Pahle
,
R.
,
2017
, “
Self-Propelled Pedestrian Dynamics Model: Application to Passenger Movement and Infection Propagation in Airplanes
,”
Phys. A
,
465
, pp.
248
260
.10.1016/j.physa.2016.08.028
7.
Spengler
,
J. D.
, and
Wilson
,
D. G.
,
2003
, “
Air Quality in Aircraft
,”
Proc. Inst. Mech. Eng.
,
217
(
4
), pp.
323
335
.10.1243/095440803322611688
8.
Centers for Disease Control (CDC),
2015
, “
Information About Airline Passengers Evaluated for Ebola
,” Centers for Disease Control, Accessed May 6, https://www.cdc.gov/vhf/ebola/flightinfo/index.html
9.
Regan
,
J. J.
,
Jungerman
,
M. R.
,
Lippold
,
S. A.
,
Washburn
,
F.
,
Roland
,
E.
,
Objio
,
T.
,
Schembri
,
C.
,
Gulati
,
R.
,
Edelson
,
P. J.
,
Alvarado-Ramy
,
F.
,
Pesik
,
N.
, and
Cohen
,
N. J.
,
2016
, “
Tracing Airline Travelers for a Public Health Investigation: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection in the United States, 2014
,”
Public Health Rep.
,
131
(
4
), pp.
552
559
. 10.1177/0033354916662213
10.
Quilty
,
B.
,
Clifford
,
S.
,
Flasche
,
S.
, and
Eggo
,
R. M.
,
2020
, “
Effectiveness of Airport Screening at Detecting Travellers Infected With 2019-nCoV
,” Accessed Feb. 23, 2021, https://www.medrxiv.org/content/10.1101/2020.01.31.20019265v1
11.
Leitmeyer
,
K.
, and
Adlhoch
,
C.
,
2016
, “
Review Article: Influenza Transmission on Aircraft: A Systematic Literature Review
,”
Epidemiology (Cambridge, MA)
,
27
(
5
), pp.
743
51
.10.1097/EDE.0000000000000438
12.
Lu
,
J.
,
Gu
,
J.
,
Li
,
K.
,
Xu
,
C.
,
Su
,
W.
,
Lai
,
Z.
,
Zhou
,
D.
,
Yu
,
C.
,
Xu
,
B.
, and
Yang
,
Z.
,
2020
, “
COVID-19 Outbreak Associated With Air Conditioning in Restaurant, Guangzhou, China, 2020
,”
Emerg. Infect. Dis.
,
26
(
7
), pp.
1628
1631
. 10.3201/eid2607.200764
13.
Sevilla
,
N. L.
,
2018
, “
Germs on a Plane: The Transmission and Risks of Airplane-Borne Diseases
,”
Transp. Res. Rec.
,
2672
(
29
), pp.
93
102
.10.1177/0361198118799709
14.
Valinsky
,
J.
,
2020
, “
Airlines Are Doing Away With Middle Seats and Beverage Service
,” CNN Business. https://www.cnn.com/2020/03/25/business/us-airline-in-flight-changes/index.html, March 25.
15.
Airliners.net
,
2020
, “Standard Aisle Width B737/A320?” Accessed Feb. 23, 2021, https://www.airliners.net/forum/viewtopic.php?t=736443
16.
The Flight,
2020
, “
Seat Map Boeing 737-800 Southwest Airlines. Best Seats in Plane
,” https://theflight.info/seat-map-boeing-737-800-southwest-airlines-best-seats-in-plane/, last accessed June.
17.
Wilson
,
B.
,
2019
, “
Seat Pitches and Widths on the Top 6 U.S. Carriers
,” Accessed June 26, https://www.tripsavvy.com/everything-you-want-to-know-about-airline-seat-pitch-53282
18.
Worldometer
,
2020
, “
United States Coronavirus
,” Accessed June 12, https://www.worldometers.info/coronavirus/country/us/
19.
Li
,
R.
,
Pei
,
S.
,
Chen
,
B.
,
Song
,
Y.
,
Zhang
,
T.
,
Yang
,
W.
, and
Shaman
,
J.
,
2020
, “
Substantial Undocumented Infection Facilitates the Rapid Dissemination of Novel Coronavirus (SARS-CoV-2)
,”
Science
,
368
(
6490
), pp.
489
493
. Issue May10.1126/science.abb3221
20.
Liu
,
G. R.
, and
Liu
,
M. B.
,
2003
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
,
World Scientific
, Singapore.
21.
MathWorks
,
2020
, “
MATLAB Documentation
,” https://www.mathworks.com/help/matlab/index.html, last accessed June.
22.
MathWorks
,
2020
, “
Uniformly Distributed Random Numbers – MATLAB Rand
,” https://www.mathworks.com/help/matlab/ref/rand.html, last accessed June.
23.
Intellectual Ventures Management, LLC (IVM),
2021, “SIR and SIRS M,” Bill & Melinda Gates Foundation, http://idmod.org/docs/general/model-sir.html
24.
Kermack
,
W.
, and
McKendrick
,
A. G.
,
1927
, “
A Contribution to the Mathematical Theory of Epidemics
,”
Proc. R. Soc. London A
,
115
(
772
), pp.
700
721
.10.1098/rspa.1927.0118
25.
van den Driessche
,
P.
,
2017
, “
Reproduction Numbers of Infectious Disease Models
,”
Infect. Dis. Modell.
,
2
(
3
), pp.
288
303
. 10.1016/j.idm.2017.06.002
26.
Mukherjee
,
S.
,
Goswami
,
D.
, and
Chatterjee
,
S.
,
2015
, “
A Lagrangian Approach to Modeling and Analysis of a Crowd Dynamics
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
45
(
6
), pp.
865
876
.10.1109/TSMC.2015.2389763
27.
Lahijani
,
M. S.
,
Islam
,
T.
,
Srinivasan
,
A.
, and
Namilae
,
S.
,
2020
, “
Constrained Linear Movement Model (CALM): Simulation of Passenger Movement in Airplanes
,”
PLoS ONE
,
15
(
3
), p.
e0229690
.10.1371/journal.pone.0229690
28.
Bui
,
H.
,
Sakurahara
,
T.
,
Reihani
,
S.
,
Kee
,
E.
, and
Mohaghegh
,
Z.
,
2020
, “
Spatiotemporal Integration of an Agent-Based First Responder Performance Model With a Fire Hazard Propagation Model for Probabilistic Risk Assessment of Nuclear Power Plants
,”
ASCE-ASME J. Risk Uncert. Part B
,
6
(
1
), p. 011011.10.1115/1.4044793
29.
Kakizaki
,
T.
,
Urii
,
J.
, and
Endo
,
M.
, December
2017
, “
Simulation and Experiment of Mass Evacuation to a Tsunami Evacuation Tower
,”
ASME J. Risk Uncert. Part B
,
3
(
4
), p.
041007
.10.1115/1.4036662
30.
Grant
,
M. J.
, and
Stewart
,
M. G.
, June
2017
, “
Benefit of Distributed Security Queueing for Reducing Risks Associated With Improvised Explosive Device Attacks in Airport Terminals
,”
ASME J. Risk Uncert. Part B
,
3
(
2
), p.
021003
.10.1115/1.4035730
31.
Wagner
,
B. G.
,
Coburn
,
B. J.
, and
Blower
,
S.
,
2009
, “
Calculating the Potential for Within-Flight Transmission of Influenza A (H1N1)
,”
BMC Med.
,
7
(
1
), p.
81
.10.1186/1741-7015-7-81
32.
Coburn
,
B. J.
, and
Blower
,
S.
,
2014
, “
Predicting the Potential for Within-Flight Transmission and Global Dissemination of MERS
,”
Lancet Infect. Dis.
,
14
(
2
), p.
99
.10.1016/S1473-3099(13)70358-X
You do not currently have access to this content.